IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v84y2022i3d10.1007_s10898-022-01159-7.html
   My bibliography  Save this article

Scalar and vector equilibrium problems with pairs of bifunctions

Author

Listed:
  • Mircea Balaj

    (University of Oradea)

Abstract

In this paper, existence results for scalar and vector equilibrium problems involving two bifunctions are established. To this aim, a new concept of generalized pseudomonotonicity for a pair of bifunctions is introduced. It leads to existence criteria different from the ones encountered in the literature. The given applications refer to minimax inequalities and variational inequality problems.

Suggested Citation

  • Mircea Balaj, 2022. "Scalar and vector equilibrium problems with pairs of bifunctions," Journal of Global Optimization, Springer, vol. 84(3), pages 739-753, November.
  • Handle: RePEc:spr:jglopt:v:84:y:2022:i:3:d:10.1007_s10898-022-01159-7
    DOI: 10.1007/s10898-022-01159-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-022-01159-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-022-01159-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Boualem Alleche & Vicenţiu D. Rădulescu, 2016. "Solutions and Approximate Solutions of Quasi-Equilibrium Problems in Banach Spaces," Journal of Optimization Theory and Applications, Springer, vol. 170(2), pages 629-649, August.
    2. M. Castellani & M. Giuli, 2010. "On Equivalent Equilibrium Problems," Journal of Optimization Theory and Applications, Springer, vol. 147(1), pages 157-168, October.
    3. M. Bianchi & R. Pini, 2005. "Coercivity Conditions for Equilibrium Problems," Journal of Optimization Theory and Applications, Springer, vol. 124(1), pages 79-92, January.
    4. John Cotrina & Anton Svensson, 2021. "The finite intersection property for equilibrium problems," Journal of Global Optimization, Springer, vol. 79(4), pages 941-957, April.
    5. M. Fakhar & J. Zafarani, 2005. "Equilibrium Problems in the Quasimonotone Case," Journal of Optimization Theory and Applications, Springer, vol. 126(1), pages 125-136, July.
    6. K. L. Lin & D. P. Yang & J. C. Yao, 1997. "Generalized Vector Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 92(1), pages 117-125, January.
    7. N. Hadjisavvas & S. Schaible, 1998. "From Scalar to Vector Equilibrium Problems in the Quasimonotone Case," Journal of Optimization Theory and Applications, Springer, vol. 96(2), pages 297-309, February.
    8. John Cotrina & Javier Zúñiga, 2019. "Quasi-equilibrium problems with non-self constraint map," Journal of Global Optimization, Springer, vol. 75(1), pages 177-197, September.
    9. M. Bianchi & N. Hadjisavvas & S. Schaible, 1997. "Vector Equilibrium Problems with Generalized Monotone Bifunctions," Journal of Optimization Theory and Applications, Springer, vol. 92(3), pages 527-542, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mircea Balaj & Dan Florin Serac, 2023. "Generalized Equilibrium Problems," Mathematics, MDPI, vol. 11(9), pages 1-11, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gábor Kassay & Mihaela Miholca, 2015. "Existence results for vector equilibrium problems given by a sum of two functions," Journal of Global Optimization, Springer, vol. 63(1), pages 195-211, September.
    2. M. Fakhar & J. Zafarani, 2008. "Generalized Symmetric Vector Quasiequilibrium Problems," Journal of Optimization Theory and Applications, Springer, vol. 136(3), pages 397-409, March.
    3. X. H. Gong, 2008. "Continuity of the Solution Set to Parametric Weak Vector Equilibrium Problems," Journal of Optimization Theory and Applications, Springer, vol. 139(1), pages 35-46, October.
    4. John Cotrina & Anton Svensson, 2021. "The finite intersection property for equilibrium problems," Journal of Global Optimization, Springer, vol. 79(4), pages 941-957, April.
    5. O. Chadli & S. Schaible & J. C. Yao, 2004. "Regularized Equilibrium Problems with Application to Noncoercive Hemivariational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 121(3), pages 571-596, June.
    6. Ouayl Chadli & Qamrul Hasan Ansari & Suliman Al-Homidan, 2017. "Existence of Solutions and Algorithms for Bilevel Vector Equilibrium Problems: An Auxiliary Principle Technique," Journal of Optimization Theory and Applications, Springer, vol. 172(3), pages 726-758, March.
    7. N. J. Huang & J. Li & J. C. Yao, 2007. "Gap Functions and Existence of Solutions for a System of Vector Equilibrium Problems," Journal of Optimization Theory and Applications, Springer, vol. 133(2), pages 201-212, May.
    8. I. V. Konnov & S. Schaible, 2000. "Duality for Equilibrium Problems under Generalized Monotonicity," Journal of Optimization Theory and Applications, Springer, vol. 104(2), pages 395-408, February.
    9. X. H. Gong, 2001. "Efficiency and Henig Efficiency for Vector Equilibrium Problems," Journal of Optimization Theory and Applications, Springer, vol. 108(1), pages 139-154, January.
    10. Y.-P. Fang & N.-J. Huang, 2007. "Equivalence of Equilibrium Problems and Least Element Problems," Journal of Optimization Theory and Applications, Springer, vol. 132(3), pages 411-422, March.
    11. Q. H. Ansari & S. Schaible & J. C. Yao, 2000. "System of Vector Equilibrium Problems and Its Applications," Journal of Optimization Theory and Applications, Springer, vol. 107(3), pages 547-557, December.
    12. Ouayl Chadli & Qamrul Hasan Ansari & Jen-Chih Yao, 2016. "Mixed Equilibrium Problems and Anti-periodic Solutions for Nonlinear Evolution Equations," Journal of Optimization Theory and Applications, Springer, vol. 168(2), pages 410-440, February.
    13. Lai-Jiu Lin & Qamrul Ansari & Yu-Jen Huang, 2007. "Some existence results for solutions of generalized vector quasi-equilibrium problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 65(1), pages 85-98, February.
    14. N. Hadjisavvas & S. Schaible, 1998. "From Scalar to Vector Equilibrium Problems in the Quasimonotone Case," Journal of Optimization Theory and Applications, Springer, vol. 96(2), pages 297-309, February.
    15. Q. H. Ansari & I. V. Konnov & J. C. Yao, 2001. "Existence of a Solution and Variational Principles for Vector Equilibrium Problems," Journal of Optimization Theory and Applications, Springer, vol. 110(3), pages 481-492, September.
    16. Mircea Balaj & Marco Castellani & Massimiliano Giuli, 2023. "New criteria for existence of solutions for equilibrium problems," Computational Management Science, Springer, vol. 20(1), pages 1-16, December.
    17. Monica Bianchi & Siegfried Schaible, 2004. "Equilibrium Problems under Generalized Convexity and Generalized Monotonicity," Journal of Global Optimization, Springer, vol. 30(2), pages 121-134, November.
    18. X. H. Gong, 2007. "Connectedness of the Solution Sets and Scalarization for Vector Equilibrium Problems," Journal of Optimization Theory and Applications, Springer, vol. 133(2), pages 151-161, May.
    19. Jian-Wen Peng & Soon-Yi Wu & Yan Wang, 2012. "Levitin-Polyak well-posedness of generalized vector quasi-equilibrium problems with functional constraints," Journal of Global Optimization, Springer, vol. 52(4), pages 779-795, April.
    20. Y. Chiang & O. Chadli & J. Yao, 2004. "Generalized Vector Equilibrium Problems with Trifunctions," Journal of Global Optimization, Springer, vol. 30(2), pages 135-154, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:84:y:2022:i:3:d:10.1007_s10898-022-01159-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.