IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i20p2532-d652298.html
   My bibliography  Save this article

Arcwise Connectedness of the Solution Sets for Generalized Vector Equilibrium Problems

Author

Listed:
  • Qiuying Li

    (College of Science and Technology, Nanchang University, Gongqingcheng 332020, China)

  • Sanhua Wang

    (Department of Mathematics, Nanchang University, Nanchang 330031, China)

Abstract

In this research, by means of the scalarization method, arcwise connectedness results were established for the sets of globally efficient solutions, weakly efficient solutions, Henig efficient solutions and superefficient solutions for the generalized vector equilibrium problem under suitable assumptions of natural quasi cone-convexity and natural quasi cone-concavity.

Suggested Citation

  • Qiuying Li & Sanhua Wang, 2021. "Arcwise Connectedness of the Solution Sets for Generalized Vector Equilibrium Problems," Mathematics, MDPI, vol. 9(20), pages 1-9, October.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:20:p:2532-:d:652298
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/20/2532/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/20/2532/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. X. H. Gong, 2007. "Connectedness of the Solution Sets and Scalarization for Vector Equilibrium Problems," Journal of Optimization Theory and Applications, Springer, vol. 133(2), pages 151-161, May.
    2. X. H. Gong & J. C. Yao, 2008. "Connectedness of the Set of Efficient Solutions for Generalized Systems," Journal of Optimization Theory and Applications, Springer, vol. 138(2), pages 189-196, August.
    3. Yangdong Xu & Pingping Zhang, 2018. "Connectedness of Solution Sets of Strong Vector Equilibrium Problems with an Application," Journal of Optimization Theory and Applications, Springer, vol. 178(1), pages 131-152, July.
    4. Yu Han & Nan-jing Huang, 2018. "Existence and Connectedness of Solutions for Generalized Vector Quasi-Equilibrium Problems," Journal of Optimization Theory and Applications, Springer, vol. 179(1), pages 65-85, October.
    5. Jun-Yi Fu, 2000. "Generalized vector quasi-equilibrium problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 52(1), pages 57-64, September.
    6. X. H. Gong, 2001. "Efficiency and Henig Efficiency for Vector Equilibrium Problems," Journal of Optimization Theory and Applications, Springer, vol. 108(1), pages 139-154, January.
    7. Zaiyun Peng & Ziyuan Wang & Xinmin Yang, 2020. "Connectedness of Solution Sets for Weak Generalized Symmetric Ky Fan Inequality Problems via Addition-Invariant Sets," Journal of Optimization Theory and Applications, Springer, vol. 185(1), pages 188-206, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Árpád Bűrmen & Tadej Tuma, 2022. "Preface to the Special Issue on “Optimization Theory and Applications”," Mathematics, MDPI, vol. 10(24), pages 1-3, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xin Xu & Yang Dong Xu, 2019. "Connectedness and Path Connectedness of Weak Efficient Solution Sets of Vector Optimization Problems via Nonlinear Scalarization Methods," Mathematics, MDPI, vol. 7(10), pages 1-10, October.
    2. Yu Han & Nan-jing Huang, 2018. "Existence and Connectedness of Solutions for Generalized Vector Quasi-Equilibrium Problems," Journal of Optimization Theory and Applications, Springer, vol. 179(1), pages 65-85, October.
    3. Zaiyun Peng & Ziyuan Wang & Xinmin Yang, 2020. "Connectedness of Solution Sets for Weak Generalized Symmetric Ky Fan Inequality Problems via Addition-Invariant Sets," Journal of Optimization Theory and Applications, Springer, vol. 185(1), pages 188-206, April.
    4. Adela Capătă, 2011. "Existence results for proper efficient solutions of vector equilibrium problems and applications," Journal of Global Optimization, Springer, vol. 51(4), pages 657-675, December.
    5. X. H. Gong, 2008. "Continuity of the Solution Set to Parametric Weak Vector Equilibrium Problems," Journal of Optimization Theory and Applications, Springer, vol. 139(1), pages 35-46, October.
    6. X. Gong, 2011. "Chebyshev scalarization of solutions to the vector equilibrium problems," Journal of Global Optimization, Springer, vol. 49(4), pages 607-622, April.
    7. S. J. Li & Z. M. Fang, 2010. "Lower Semicontinuity of the Solution Mappings to a Parametric Generalized Ky Fan Inequality," Journal of Optimization Theory and Applications, Springer, vol. 147(3), pages 507-515, December.
    8. Yangdong Xu & Pingping Zhang, 2018. "Connectedness of Solution Sets of Strong Vector Equilibrium Problems with an Application," Journal of Optimization Theory and Applications, Springer, vol. 178(1), pages 131-152, July.
    9. L. P. Hai & L. Huerga & P. Q. Khanh & V. Novo, 2019. "Variants of the Ekeland variational principle for approximate proper solutions of vector equilibrium problems," Journal of Global Optimization, Springer, vol. 74(2), pages 361-382, June.
    10. X. H. Gong & J. C. Yao, 2008. "Connectedness of the Set of Efficient Solutions for Generalized Systems," Journal of Optimization Theory and Applications, Springer, vol. 138(2), pages 189-196, August.
    11. X. H. Gong, 2007. "Connectedness of the Solution Sets and Scalarization for Vector Equilibrium Problems," Journal of Optimization Theory and Applications, Springer, vol. 133(2), pages 151-161, May.
    12. Jian-Wen Peng & Soon-Yi Wu & Yan Wang, 2012. "Levitin-Polyak well-posedness of generalized vector quasi-equilibrium problems with functional constraints," Journal of Global Optimization, Springer, vol. 52(4), pages 779-795, April.
    13. Le Phuoc Hai, 2021. "Ekeland variational principles involving set perturbations in vector equilibrium problems," Journal of Global Optimization, Springer, vol. 79(3), pages 733-756, March.
    14. N. T. T. Huong & N. D. Yen, 2014. "The Pascoletti–Serafini Scalarization Scheme and Linear Vector Optimization," Journal of Optimization Theory and Applications, Springer, vol. 162(2), pages 559-576, August.
    15. Gábor Kassay & Mihaela Miholca, 2015. "Existence results for vector equilibrium problems given by a sum of two functions," Journal of Global Optimization, Springer, vol. 63(1), pages 195-211, September.
    16. M. Balaj & L. J. Lin, 2013. "Existence Criteria for the Solutions of Two Types of Variational Relation Problems," Journal of Optimization Theory and Applications, Springer, vol. 156(2), pages 232-246, February.
    17. N. Minh & N. Tan, 2006. "On the Existence of Solutions of Quasi-equilibrium Problems with Constraints," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 64(1), pages 17-31, August.
    18. Tran Van Su, 2018. "New optimality conditions for unconstrained vector equilibrium problem in terms of contingent derivatives in Banach spaces," 4OR, Springer, vol. 16(2), pages 173-198, June.
    19. R. P. Agarwal & M. Balaj & D. O’Regan, 2012. "A Unifying Approach to Variational Relation Problems," Journal of Optimization Theory and Applications, Springer, vol. 155(2), pages 417-429, November.
    20. X. Gong, 2007. "Symmetric strong vector quasi-equilibrium problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 65(2), pages 305-314, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:20:p:2532-:d:652298. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.