IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v79y2021i3d10.1007_s10898-020-00945-5.html
   My bibliography  Save this article

Ekeland variational principles involving set perturbations in vector equilibrium problems

Author

Listed:
  • Le Phuoc Hai

    (University of Science
    Vietnam National University)

Abstract

On the basis of the notion of approximating family of cones and a generalized type of Gerstewitz’s/Tammer’s nonlinear scalarization functional, we establish variants of the Ekeland variational principle (for short, EVP) involving set perturbations for a type of approximate proper solutions in the sense of Henig of a vector equilibrium problem. Initially, these results are obtained for both an unconstrained and a constrained vector equilibrium problem, where the objective function takes values in a real locally convex Hausdorff topological linear space. After that, we consider special cases when the objective function takes values in a normed space and in a finite-dimensional vector space. For the finite-dimensional objective space with a polyhedral ordering cone, we give the explicit representation of variants of EVP depending on matrices, and in such a way, some selected applications for multiobjective optimization problems and vector variational inequality problems are also derived.

Suggested Citation

  • Le Phuoc Hai, 2021. "Ekeland variational principles involving set perturbations in vector equilibrium problems," Journal of Global Optimization, Springer, vol. 79(3), pages 733-756, March.
  • Handle: RePEc:spr:jglopt:v:79:y:2021:i:3:d:10.1007_s10898-020-00945-5
    DOI: 10.1007/s10898-020-00945-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-020-00945-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-020-00945-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. X. H. Gong, 2007. "Connectedness of the Solution Sets and Scalarization for Vector Equilibrium Problems," Journal of Optimization Theory and Applications, Springer, vol. 133(2), pages 151-161, May.
    2. T. Q. Bao & S. Cobzaş & A. Soubeyran, 2018. "Variational principles, completeness and the existence of traps in behavioral sciences," Annals of Operations Research, Springer, vol. 269(1), pages 53-79, October.
    3. L. P. Hai & L. Huerga & P. Q. Khanh & V. Novo, 2019. "Variants of the Ekeland variational principle for approximate proper solutions of vector equilibrium problems," Journal of Global Optimization, Springer, vol. 74(2), pages 361-382, June.
    4. P. Khanh & D. Quy, 2011. "On generalized Ekeland’s variational principle and equivalent formulations for set-valued mappings," Journal of Global Optimization, Springer, vol. 49(3), pages 381-396, March.
    5. C. Gutiérrez & B. Jiménez & V. Novo, 2006. "On Approximate Efficiency in Multiobjective Programming," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 64(1), pages 165-185, August.
    6. X. H. Gong, 2001. "Efficiency and Henig Efficiency for Vector Equilibrium Problems," Journal of Optimization Theory and Applications, Springer, vol. 108(1), pages 139-154, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. L. P. Hai & L. Huerga & P. Q. Khanh & V. Novo, 2019. "Variants of the Ekeland variational principle for approximate proper solutions of vector equilibrium problems," Journal of Global Optimization, Springer, vol. 74(2), pages 361-382, June.
    2. Majid Fakhar & Mohammadreza Khodakhah & Ali Mazyaki & Antoine Soubeyran & Jafar Zafarani, 2022. "Variational rationality, variational principles and the existence of traps in a changing environment," Journal of Global Optimization, Springer, vol. 82(1), pages 161-177, January.
    3. X. H. Gong, 2008. "Continuity of the Solution Set to Parametric Weak Vector Equilibrium Problems," Journal of Optimization Theory and Applications, Springer, vol. 139(1), pages 35-46, October.
    4. X. Gong, 2011. "Chebyshev scalarization of solutions to the vector equilibrium problems," Journal of Global Optimization, Springer, vol. 49(4), pages 607-622, April.
    5. S. J. Li & Z. M. Fang, 2010. "Lower Semicontinuity of the Solution Mappings to a Parametric Generalized Ky Fan Inequality," Journal of Optimization Theory and Applications, Springer, vol. 147(3), pages 507-515, December.
    6. Qiuying Li & Sanhua Wang, 2021. "Arcwise Connectedness of the Solution Sets for Generalized Vector Equilibrium Problems," Mathematics, MDPI, vol. 9(20), pages 1-9, October.
    7. Adela Capătă, 2011. "Existence results for proper efficient solutions of vector equilibrium problems and applications," Journal of Global Optimization, Springer, vol. 51(4), pages 657-675, December.
    8. X. H. Gong & J. C. Yao, 2008. "Connectedness of the Set of Efficient Solutions for Generalized Systems," Journal of Optimization Theory and Applications, Springer, vol. 138(2), pages 189-196, August.
    9. N. T. T. Huong & N. D. Yen, 2014. "The Pascoletti–Serafini Scalarization Scheme and Linear Vector Optimization," Journal of Optimization Theory and Applications, Springer, vol. 162(2), pages 559-576, August.
    10. Yu Han & Nan-jing Huang, 2018. "Existence and Connectedness of Solutions for Generalized Vector Quasi-Equilibrium Problems," Journal of Optimization Theory and Applications, Springer, vol. 179(1), pages 65-85, October.
    11. Yangdong Xu & Pingping Zhang, 2018. "Connectedness of Solution Sets of Strong Vector Equilibrium Problems with an Application," Journal of Optimization Theory and Applications, Springer, vol. 178(1), pages 131-152, July.
    12. Nguyen Van Hung & Vicente Novo & Vo Minh Tam, 2022. "Error bound analysis for vector equilibrium problems with partial order provided by a polyhedral cone," Journal of Global Optimization, Springer, vol. 82(1), pages 139-159, January.
    13. Phan Khanh & Vo Long, 2014. "Invariant-point theorems and existence of solutions to optimization-related problems," Journal of Global Optimization, Springer, vol. 58(3), pages 545-564, March.
    14. Tran Van Su, 2018. "New optimality conditions for unconstrained vector equilibrium problem in terms of contingent derivatives in Banach spaces," 4OR, Springer, vol. 16(2), pages 173-198, June.
    15. Ştefan Cobzaş, 2024. "The Strong Ekeland Variational Principle in Quasi-Pseudometric Spaces," Mathematics, MDPI, vol. 12(3), pages 1-13, February.
    16. T. Q. Bao & B. S. Mordukhovich & A. Soubeyran, 2015. "Variational Analysis in Psychological Modeling," Journal of Optimization Theory and Applications, Springer, vol. 164(1), pages 290-315, January.
    17. Szilárd László, 2016. "Vector Equilibrium Problems on Dense Sets," Journal of Optimization Theory and Applications, Springer, vol. 170(2), pages 437-457, August.
    18. Takashi Maeda, 2012. "On Optimization Problems with Set-Valued Objective Maps: Existence and Optimality," Journal of Optimization Theory and Applications, Springer, vol. 153(2), pages 263-279, May.
    19. Q. Q. Song & G. Q. Tang & L. S. Wang, 2013. "On Essential Stable Sets of Solutions in Set Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 156(3), pages 591-599, March.
    20. Gutiérrez, C. & Jiménez, B. & Novo, V., 2012. "Improvement sets and vector optimization," European Journal of Operational Research, Elsevier, vol. 223(2), pages 304-311.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:79:y:2021:i:3:d:10.1007_s10898-020-00945-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.