IDEAS home Printed from https://ideas.repec.org/a/ibn/masjnl/v3y2009i5p204.html
   My bibliography  Save this article

One New Method on ARMA Model Parameters Estimation

Author

Listed:
  • Xiaoqin Cao
  • Rui Shan
  • Jing Fan
  • Peiliang Li

Abstract

The estimation of ARMA model parameters really belongs to the least-square problem,in ARMA model because the residual are calculated by given time series,the time series and parameter are nonlinear.However it is difficult to calculate the derivative of objective function.This paper substitutes derivative with difference,then calculate the first derivative and the second derivative of objective function.Finally we prove that, under suitable hypotheses, the proposed algorithm converges globally.

Suggested Citation

  • Xiaoqin Cao & Rui Shan & Jing Fan & Peiliang Li, 2009. "One New Method on ARMA Model Parameters Estimation," Modern Applied Science, Canadian Center of Science and Education, vol. 3(5), pages 204-204, May.
  • Handle: RePEc:ibn:masjnl:v:3:y:2009:i:5:p:204
    as

    Download full text from publisher

    File URL: https://ccsenet.org/journal/index.php/mas/article/download/1961/1865
    Download Restriction: no

    File URL: https://ccsenet.org/journal/index.php/mas/article/view/1961
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. J. Z. Zhang & N. Y. Deng & L. H. Chen, 1999. "New Quasi-Newton Equation and Related Methods for Unconstrained Optimization," Journal of Optimization Theory and Applications, Springer, vol. 102(1), pages 147-167, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kaori Sugiki & Yasushi Narushima & Hiroshi Yabe, 2012. "Globally Convergent Three-Term Conjugate Gradient Methods that Use Secant Conditions and Generate Descent Search Directions for Unconstrained Optimization," Journal of Optimization Theory and Applications, Springer, vol. 153(3), pages 733-757, June.
    2. Fahimeh Biglari & Farideh Mahmoodpur, 2016. "Scaling Damped Limited-Memory Updates for Unconstrained Optimization," Journal of Optimization Theory and Applications, Springer, vol. 170(1), pages 177-188, July.
    3. Babaie-Kafaki, Saman & Ghanbari, Reza, 2014. "The Dai–Liao nonlinear conjugate gradient method with optimal parameter choices," European Journal of Operational Research, Elsevier, vol. 234(3), pages 625-630.
    4. Yu, Yang & Wang, Yu & Deng, Rui & Yin, Yu, 2023. "New DY-HS hybrid conjugate gradient algorithm for solving optimization problem of unsteady partial differential equations with convection term," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 208(C), pages 677-701.
    5. Hassan Mohammad & Mohammed Yusuf Waziri, 2019. "Structured Two-Point Stepsize Gradient Methods for Nonlinear Least Squares," Journal of Optimization Theory and Applications, Springer, vol. 181(1), pages 298-317, April.
    6. Fahimeh Biglari & Maghsud Solimanpur, 2013. "Scaling on the Spectral Gradient Method," Journal of Optimization Theory and Applications, Springer, vol. 158(2), pages 626-635, August.
    7. S. Bojari & M. R. Eslahchi, 2020. "Global convergence of a family of modified BFGS methods under a modified weak-Wolfe–Powell line search for nonconvex functions," 4OR, Springer, vol. 18(2), pages 219-244, June.
    8. Yong Li & Gonglin Yuan & Zhou Sheng, 2018. "An active-set algorithm for solving large-scale nonsmooth optimization models with box constraints," PLOS ONE, Public Library of Science, vol. 13(1), pages 1-16, January.
    9. Gonglin Yuan & Xiaoliang Wang & Zhou Sheng, 2020. "The Projection Technique for Two Open Problems of Unconstrained Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 186(2), pages 590-619, August.
    10. Mehiddin Al-Baali & Humaid Khalfan, 2012. "A combined class of self-scaling and modified quasi-Newton methods," Computational Optimization and Applications, Springer, vol. 52(2), pages 393-408, June.
    11. C. X. Kou & Y. H. Dai, 2015. "A Modified Self-Scaling Memoryless Broyden–Fletcher–Goldfarb–Shanno Method for Unconstrained Optimization," Journal of Optimization Theory and Applications, Springer, vol. 165(1), pages 209-224, April.
    12. Waziri, Mohammed Yusuf & Ahmed, Kabiru & Sabi’u, Jamilu, 2019. "A family of Hager–Zhang conjugate gradient methods for system of monotone nonlinear equations," Applied Mathematics and Computation, Elsevier, vol. 361(C), pages 645-660.
    13. D. Tarzanagh & M. Peyghami, 2015. "A new regularized limited memory BFGS-type method based on modified secant conditions for unconstrained optimization problems," Journal of Global Optimization, Springer, vol. 63(4), pages 709-728, December.
    14. Andrei, Neculai, 2010. "Accelerated scaled memoryless BFGS preconditioned conjugate gradient algorithm for unconstrained optimization," European Journal of Operational Research, Elsevier, vol. 204(3), pages 410-420, August.
    15. Zexian Liu & Hongwei Liu, 2019. "An Efficient Gradient Method with Approximately Optimal Stepsize Based on Tensor Model for Unconstrained Optimization," Journal of Optimization Theory and Applications, Springer, vol. 181(2), pages 608-633, May.
    16. Saman Babaie-Kafaki, 2015. "On Optimality of the Parameters of Self-Scaling Memoryless Quasi-Newton Updating Formulae," Journal of Optimization Theory and Applications, Springer, vol. 167(1), pages 91-101, October.
    17. Zhanwen Shi & Guanyu Yang & Yunhai Xiao, 2016. "A limited memory BFGS algorithm for non-convex minimization with applications in matrix largest eigenvalue problem," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 83(2), pages 243-264, April.
    18. Vahid Morovati & Hadi Basirzadeh & Latif Pourkarimi, 2018. "Quasi-Newton methods for multiobjective optimization problems," 4OR, Springer, vol. 16(3), pages 261-294, September.
    19. Neculai Andrei, 2018. "A Double-Parameter Scaling Broyden–Fletcher–Goldfarb–Shanno Method Based on Minimizing the Measure Function of Byrd and Nocedal for Unconstrained Optimization," Journal of Optimization Theory and Applications, Springer, vol. 178(1), pages 191-218, July.
    20. Yueting, Yang & Chengxian, Xu, 2007. "A compact limited memory method for large scale unconstrained optimization," European Journal of Operational Research, Elsevier, vol. 180(1), pages 48-56, July.

    More about this item

    JEL classification:

    • R00 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General - - - General
    • Z0 - Other Special Topics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ibn:masjnl:v:3:y:2009:i:5:p:204. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Canadian Center of Science and Education (email available below). General contact details of provider: https://edirc.repec.org/data/cepflch.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.