A novel strategy based on machine learning of selective cooling control of work roll for improvement of cold rolled strip flatness
Author
Abstract
Suggested Citation
DOI: 10.1007/s10845-023-02204-2
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Chunyang Xia & Zengxi Pan & Joseph Polden & Huijun Li & Yanling Xu & Shanben Chen, 2022. "Modelling and prediction of surface roughness in wire arc additive manufacturing using machine learning," Journal of Intelligent Manufacturing, Springer, vol. 33(5), pages 1467-1482, June.
- Yi, Yong & Wang, Liming & Chen, Zhengying, 2021. "Adaptive global kernel interval SVR-based machine learning for accelerated dielectric constant prediction of polymer-based dielectric energy storage," Renewable Energy, Elsevier, vol. 176(C), pages 81-88.
- Hong Zhang & Lixing Chen & Yong Qu & Guo Zhao & Zhenwei Guo, 2014. "Support Vector Regression Based on Grid-Search Method for Short-Term Wind Power Forecasting," Journal of Applied Mathematics, Hindawi, vol. 2014, pages 1-11, June.
- Sherwan Mohammed Najm & Imre Paniti, 2023. "Investigation and machine learning-based prediction of parametric effects of single point incremental forming on pillow effect and wall profile of AlMn1Mg1 aluminum alloy sheets," Journal of Intelligent Manufacturing, Springer, vol. 34(1), pages 331-367, January.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zhou, Zhongbao & Gao, Meng & Liu, Qing & Xiao, Helu, 2020. "Forecasting stock price movements with multiple data sources: Evidence from stock market in China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 542(C).
- Jesús Ferrero Bermejo & Juan Francisco Gómez Fernández & Rafael Pino & Adolfo Crespo Márquez & Antonio Jesús Guillén López, 2019. "Review and Comparison of Intelligent Optimization Modelling Techniques for Energy Forecasting and Condition-Based Maintenance in PV Plants," Energies, MDPI, vol. 12(21), pages 1-18, October.
- Ren, Yuting & Li, Zhuolin & Xu, Lingyu & Yu, Jie, 2023. "The data-based adaptive graph learning network for analysis and prediction of offshore wind speed," Energy, Elsevier, vol. 267(C).
- Adolfo Crespo Márquez & Antonio de la Fuente Carmona & Sara Antomarioni, 2019. "A Process to Implement an Artificial Neural Network and Association Rules Techniques to Improve Asset Performance and Energy Efficiency," Energies, MDPI, vol. 12(18), pages 1-25, September.
- Warut Pannakkong & Thanyaporn Harncharnchai & Jirachai Buddhakulsomsiri, 2022. "Forecasting Daily Electricity Consumption in Thailand Using Regression, Artificial Neural Network, Support Vector Machine, and Hybrid Models," Energies, MDPI, vol. 15(9), pages 1-21, April.
- Liu, Gang & Wang, Kun & Hao, Xiaochen & Zhang, Zhipeng & Zhao, Yantao & Xu, Qingquan, 2022. "SA-LSTMs: A new advance prediction method of energy consumption in cement raw materials grinding system," Energy, Elsevier, vol. 241(C).
- Wang, Cong & Zhang, Hongli & Ma, Ping, 2020. "Wind power forecasting based on singular spectrum analysis and a new hybrid Laguerre neural network," Applied Energy, Elsevier, vol. 259(C).
- Jyothi Padmaja Koduru & T. Vijay Kumar & Kedar Mallik Mantrala, 2024. "A review of wire and arc additive manufacturing using different property characterization, challenges and future trends," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 15(9), pages 4563-4581, September.
- Ju-Yeol Ryu & Bora Lee & Sungho Park & Seonghyeon Hwang & Hyemin Park & Changhyeong Lee & Dohyeon Kwon, 2022. "Evaluation of Weather Information for Short-Term Wind Power Forecasting with Various Types of Models," Energies, MDPI, vol. 15(24), pages 1-14, December.
- Zhang, Yagang & Pan, Zhiya & Wang, Hui & Wang, Jingchao & Zhao, Zheng & Wang, Fei, 2023. "Achieving wind power and photovoltaic power prediction: An intelligent prediction system based on a deep learning approach," Energy, Elsevier, vol. 283(C).
More about this item
Keywords
Machine learning model; Cold rolling process; Selective work roll cooling; Strip flatness; Steel manufacturing;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:35:y:2024:i:7:d:10.1007_s10845-023-02204-2. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.