IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v34y2023i7d10.1007_s10845-022-01987-0.html
   My bibliography  Save this article

Evaluation of the reliability of resistance spot welding control via on-line monitoring of dynamic resistance

Author

Listed:
  • Sergey Butsykin

    (‘Polyus’ Research and Production Center
    Tomsk Polytechnic University)

  • Anton Gordynets

    (Tomsk Polytechnic University)

  • Alexey Kiselev

    (Tomsk Polytechnic University)

  • Mikhail Slobodyan

    (Tomsk Scientific Center SB RAS)

Abstract

In resistance spot welding (RSW), initial resistance between electrodes (RBE) determines heat input (according to Joule’s law) and greatly affects the quality of joints. In turn, RBE values are characterized by substantial uncertainty and vary during the RSW processes. To reduce their dispersions, preliminary low-current pulses are applied. In some cases, the quality of the formed RSW joints are controlled using dynamic resistances obtained by feedback from advanced power sources. In these studies, the effect of four preheating current diagrams on the stabilization of the RBE values was investigated for a wide range of parts made of copper, brass, bronze, austenitic stainless steel, as well as aluminum, titanium and zirconium alloys with thicknesses from 0.2 to 1.0 mm in various combinations. Also, the RSW process control capabilities were assessed using feedback from an up-to-date digital synthesizer of unipolar current pulses. As a result, the RBE values were stabilized in all studied cases. Ranges of the variations between the maximum and minimum RBE values decreased from about 5–11 down to 2–5 times. However, the applied algorithms of the preheating current pulses had no effect on the RBE dispersions. It was found that dynamic electrical processes in a welding gun cause distortion of actual RBE curves, which makes it difficult to control heat input and, respectively, the formation of weld nuggets.

Suggested Citation

  • Sergey Butsykin & Anton Gordynets & Alexey Kiselev & Mikhail Slobodyan, 2023. "Evaluation of the reliability of resistance spot welding control via on-line monitoring of dynamic resistance," Journal of Intelligent Manufacturing, Springer, vol. 34(7), pages 3109-3129, October.
  • Handle: RePEc:spr:joinma:v:34:y:2023:i:7:d:10.1007_s10845-022-01987-0
    DOI: 10.1007/s10845-022-01987-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-022-01987-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-022-01987-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Baifan Zhou & Tim Pychynski & Markus Reischl & Evgeny Kharlamov & Ralf Mikut, 2022. "Machine learning with domain knowledge for predictive quality monitoring in resistance spot welding," Journal of Intelligent Manufacturing, Springer, vol. 33(4), pages 1139-1163, April.
    2. Dawei Zhao & Mikhail Ivanov & Yuanxun Wang & Dongjie Liang & Wenhao Du, 2021. "Multi-objective optimization of the resistance spot welding process using a hybrid approach," Journal of Intelligent Manufacturing, Springer, vol. 32(8), pages 2219-2234, December.
    3. Hamed Pashazadeh & Yousof Gheisari & Mohsen Hamedi, 2016. "Statistical modeling and optimization of resistance spot welding process parameters using neural networks and multi-objective genetic algorithm," Journal of Intelligent Manufacturing, Springer, vol. 27(3), pages 549-559, June.
    4. Hasan Tercan & Tobias Meisen, 2022. "Machine learning and deep learning based predictive quality in manufacturing: a systematic review," Journal of Intelligent Manufacturing, Springer, vol. 33(7), pages 1879-1905, October.
    5. Lei Zhou & Tianjian Li & Wenjia Zheng & Zhongdian Zhang & Zhenglong Lei & Laijun Wu & Shiliang Zhu & Wenming Wang, 2022. "Online monitoring of resistance spot welding electrode wear state based on dynamic resistance," Journal of Intelligent Manufacturing, Springer, vol. 33(1), pages 91-101, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhen Zhang & Zenan Yang & Chenchong Wang & Wei Xu, 2024. "Accelerating ultrashort pulse laser micromachining process comprehensive optimization using a machine learning cycle design strategy integrated with a physical model," Journal of Intelligent Manufacturing, Springer, vol. 35(1), pages 449-465, January.
    2. Pauline Ong & Chon Haow Chong & Mohammad Zulafif Rahim & Woon Kiow Lee & Chee Kiong Sia & Muhammad Ariff Haikal Ahmad, 2020. "Intelligent approach for process modelling and optimization on electrical discharge machining of polycrystalline diamond," Journal of Intelligent Manufacturing, Springer, vol. 31(1), pages 227-247, January.
    3. Jiyoung Jung & Kundo Park & Byungjin Cho & Jinkyoo Park & Seunghwa Ryu, 2023. "Optimization of injection molding process using multi-objective bayesian optimization and constrained generative inverse design networks," Journal of Intelligent Manufacturing, Springer, vol. 34(8), pages 3623-3636, December.
    4. Bianca Maria Colosimo & Luca Pagani & Marco Grasso, 2024. "Modeling spatial point processes in video-imaging via Ripley’s K-function: an application to spatter analysis in additive manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 35(1), pages 429-447, January.
    5. Shugui Wang & Yunxian Cui & Yuxin Song & Chenggang Ding & Wanyu Ding & Junwei Yin, 2024. "A novel surface temperature sensor and random forest-based welding quality prediction model," Journal of Intelligent Manufacturing, Springer, vol. 35(7), pages 3291-3314, October.
    6. Lei Zhou & Tianjian Li & Wenjia Zheng & Zhongdian Zhang & Zhenglong Lei & Laijun Wu & Shiliang Zhu & Wenming Wang, 2022. "Online monitoring of resistance spot welding electrode wear state based on dynamic resistance," Journal of Intelligent Manufacturing, Springer, vol. 33(1), pages 91-101, January.
    7. Ohyung Kwon & Hyung Giun Kim & Min Ji Ham & Wonrae Kim & Gun-Hee Kim & Jae-Hyung Cho & Nam Il Kim & Kangil Kim, 2020. "A deep neural network for classification of melt-pool images in metal additive manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 31(2), pages 375-386, February.
    8. Dawei Zhao & Mikhail Ivanov & Yuanxun Wang & Wenhao Du, 2021. "Welding quality evaluation of resistance spot welding based on a hybrid approach," Journal of Intelligent Manufacturing, Springer, vol. 32(7), pages 1819-1832, October.
    9. Liang Tian & Yu Luo, 2020. "A study on the prediction of inherent deformation in fillet-welded joint using support vector machine and genetic optimization algorithm," Journal of Intelligent Manufacturing, Springer, vol. 31(3), pages 575-596, March.
    10. Indrawan Nugrahanto & Hariyanto Gunawan & Hsing-Yu Chen, 2024. "Innovative Approaches to Sustainable Computer Numeric Control Machining: A Machine Learning Perspective on Energy Efficiency," Sustainability, MDPI, vol. 16(9), pages 1-22, April.
    11. Dawei Zhao & Mikhail Ivanov & Yuanxun Wang & Dongjie Liang & Wenhao Du, 2021. "Multi-objective optimization of the resistance spot welding process using a hybrid approach," Journal of Intelligent Manufacturing, Springer, vol. 32(8), pages 2219-2234, December.
    12. Paweł Fic & Adam Czornik & Piotr Rosikowski, 2023. "Anomaly Detection for Hydraulic Power Units—A Case Study," Future Internet, MDPI, vol. 15(6), pages 1-29, June.
    13. Baifan Zhou & Tim Pychynski & Markus Reischl & Evgeny Kharlamov & Ralf Mikut, 2022. "Machine learning with domain knowledge for predictive quality monitoring in resistance spot welding," Journal of Intelligent Manufacturing, Springer, vol. 33(4), pages 1139-1163, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:34:y:2023:i:7:d:10.1007_s10845-022-01987-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.