IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v34y2023i4d10.1007_s10845-021-01875-z.html
   My bibliography  Save this article

Feature selection and domain adaptation for cross-machine product quality prediction

Author

Listed:
  • Yu Wang

    (Technology and Research (A*STAR))

  • Wei Cui

    (Technology and Research (A*STAR))

  • Nhu Khue Vuong

    (Technology and Research (A*STAR))

  • Zhenghua Chen

    (Technology and Research (A*STAR))

  • Yu Zhou

    (Technology and Research (A*STAR))

  • Min Wu

    (Technology and Research (A*STAR))

Abstract

Today’s manufacturing systems are becoming increasingly complex, dynamic and connected hence continual prediction of manufactured product quality is a key to look for patterns that can eventually lead to improved accuracy and productivity. Recent developments in artificial intelligence, especially machine learning have shown great potential to transform the manufacturing domain through analytics for processing vast amounts of manufacturing data generated (Esmaeilian et al. in J Manuf Syst 39:79–100, 2016). Although prediction models have been built to predict product quality with good accuracy, they assume that same distribution applies on training data and testing data hence fail to produce satisfying results when machines work under different conditions with varying data distribution. Naïve re-collection and re-annotation of data for each new working condition can be very expensive thus is not a feasible solution. To cope with this problem, we adopt transfer learning approach called domain adaptation to transfer the knowledge learned from one labelled operating condition (source domain) to another operating condition (target domain) without labels. Particularly, we propose an end-to-end framework for cross-machine product quality prediction, which is able to alleviate domain shift problem. To facilitate the cross-machine prediction performance, a systematic feature selection approach is designed and integrated to generate most suitable feature set to characterize the collected data. Comprehensive experiments have been conducted using actual manufacturing data and the results demonstrate significant improvement on cross-machine product quality prediction as compared to conventional techniques.

Suggested Citation

  • Yu Wang & Wei Cui & Nhu Khue Vuong & Zhenghua Chen & Yu Zhou & Min Wu, 2023. "Feature selection and domain adaptation for cross-machine product quality prediction," Journal of Intelligent Manufacturing, Springer, vol. 34(4), pages 1573-1584, April.
  • Handle: RePEc:spr:joinma:v:34:y:2023:i:4:d:10.1007_s10845-021-01875-z
    DOI: 10.1007/s10845-021-01875-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-021-01875-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-021-01875-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zoran Jurkovic & Goran Cukor & Miran Brezocnik & Tomislav Brajkovic, 2018. "A comparison of machine learning methods for cutting parameters prediction in high speed turning process," Journal of Intelligent Manufacturing, Springer, vol. 29(8), pages 1683-1693, December.
    2. Maciej Grzenda & Andres Bustillo, 2019. "Semi-supervised roughness prediction with partly unlabeled vibration data streams," Journal of Intelligent Manufacturing, Springer, vol. 30(2), pages 933-945, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sachin Kumar & T. Gopi & N. Harikeerthana & Munish Kumar Gupta & Vidit Gaur & Grzegorz M. Krolczyk & ChuanSong Wu, 2023. "Machine learning techniques in additive manufacturing: a state of the art review on design, processes and production control," Journal of Intelligent Manufacturing, Springer, vol. 34(1), pages 21-55, January.
    2. Juan Pablo Usuga Cadavid & Samir Lamouri & Bernard Grabot & Robert Pellerin & Arnaud Fortin, 2020. "Machine learning applied in production planning and control: a state-of-the-art in the era of industry 4.0," Journal of Intelligent Manufacturing, Springer, vol. 31(6), pages 1531-1558, August.
    3. Andres Bustillo & Roberto Reis & Alisson R. Machado & Danil Yu. Pimenov, 2022. "Improving the accuracy of machine-learning models with data from machine test repetitions," Journal of Intelligent Manufacturing, Springer, vol. 33(1), pages 203-221, January.
    4. Kristina Zgodavova & Peter Bober & Vidosav Majstorovic & Katarina Monkova & Gilberto Santos & Darina Juhaszova, 2020. "Innovative Methods for Small Mixed Batches Production System Improvement: The Case of a Bakery Machine Manufacturer," Sustainability, MDPI, vol. 12(15), pages 1-20, August.
    5. Sheng Yang & Thomas Page & Ying Zhang & Yaoyao Fiona Zhao, 2020. "Towards an automated decision support system for the identification of additive manufacturing part candidates," Journal of Intelligent Manufacturing, Springer, vol. 31(8), pages 1917-1933, December.
    6. Soheyl Khalilpourazari & Saman Khalilpourazary & Aybike Özyüksel Çiftçioğlu & Gerhard-Wilhelm Weber, 2021. "Designing energy-efficient high-precision multi-pass turning processes via robust optimization and artificial intelligence," Journal of Intelligent Manufacturing, Springer, vol. 32(6), pages 1621-1647, August.
    7. Muhammad Asif & Hang Shen & Chunlin Zhou & Yuandong Guo & Yibo Yuan & Pu Shao & Lan Xie & Muhammad Shoaib Bhutta, 2023. "Recent Trends, Developments, and Emerging Technologies towards Sustainable Intelligent Machining: A Critical Review, Perspectives and Future Directions," Sustainability, MDPI, vol. 15(10), pages 1-28, May.
    8. Andres Bustillo & Danil Yu. Pimenov & Mozammel Mia & Wojciech Kapłonek, 2021. "Machine-learning for automatic prediction of flatness deviation considering the wear of the face mill teeth," Journal of Intelligent Manufacturing, Springer, vol. 32(3), pages 895-912, March.
    9. Victor Flores & Brian Keith, 2019. "Gradient Boosted Trees Predictive Models for Surface Roughness in High-Speed Milling in the Steel and Aluminum Metalworking Industry," Complexity, Hindawi, vol. 2019, pages 1-15, July.
    10. Lucas Costa Brito & Márcio Bacci Silva & Marcus Antonio Viana Duarte, 2021. "Identification of cutting tool wear condition in turning using self-organizing map trained with imbalanced data," Journal of Intelligent Manufacturing, Springer, vol. 32(1), pages 127-140, January.
    11. Kai Liao & Wenjun Wang & Xuesong Mei & Wenwen Tian & Hai Yuan & Mingqiong Wang & Bozhe Wang, 2023. "Shape regulation of tapered microchannels in silica glass ablated by femtosecond laser with theoretical modeling and machine learning," Journal of Intelligent Manufacturing, Springer, vol. 34(7), pages 2907-2924, October.
    12. Zhenyu Liu & Donghao Zhang & Weiqiang Jia & Xianke Lin & Hui Liu, 2020. "An adversarial bidirectional serial–parallel LSTM-based QTD framework for product quality prediction," Journal of Intelligent Manufacturing, Springer, vol. 31(6), pages 1511-1529, August.
    13. Xianli Liu & Bowen Zhang & Xuebing Li & Shaoyang Liu & Caixu Yue & Steven Y. Liang, 2023. "An approach for tool wear prediction using customized DenseNet and GRU integrated model based on multi-sensor feature fusion," Journal of Intelligent Manufacturing, Springer, vol. 34(2), pages 885-902, February.
    14. Saksham Jain & Gautam Seth & Arpit Paruthi & Umang Soni & Girish Kumar, 2022. "Synthetic data augmentation for surface defect detection and classification using deep learning," Journal of Intelligent Manufacturing, Springer, vol. 33(4), pages 1007-1020, April.
    15. Juncheng Wang & Bin Zou & Mingfang Liu & Yishang Li & Hongjian Ding & Kai Xue, 2021. "Milling force prediction model based on transfer learning and neural network," Journal of Intelligent Manufacturing, Springer, vol. 32(4), pages 947-956, April.
    16. Jiyoung Song & Young Chul Lee & Jeongsu Lee, 2023. "Deep generative model with time series-image encoding for manufacturing fault detection in die casting process," Journal of Intelligent Manufacturing, Springer, vol. 34(7), pages 3001-3014, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:34:y:2023:i:4:d:10.1007_s10845-021-01875-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.