IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v34y2023i1d10.1007_s10845-022-01960-x.html
   My bibliography  Save this article

From knowledge-based to big data analytic model: a novel IoT and machine learning based decision support system for predictive maintenance in Industry 4.0

Author

Listed:
  • Riccardo Rosati

    (Marche Polytechnic University)

  • Luca Romeo

    (Marche Polytechnic University
    Computational Statistics and Machine Learning, Istituto Italiano di Tecnologia)

  • Gianalberto Cecchini

    (Sinergia Consulenze Srl)

  • Flavio Tonetto

    (Sinergia Consulenze Srl)

  • Paolo Viti

    (Benelli Armi Spa)

  • Adriano Mancini

    (Marche Polytechnic University)

  • Emanuele Frontoni

    (Marche Polytechnic University)

Abstract

The Internet of Things (IoT), Big Data and Machine Learning (ML) may represent the foundations for implementing the concept of intelligent production, smart products, services, and predictive maintenance (PdM). The majority of the state-of-the-art ML approaches for PdM use different condition monitoring data (e.g. vibrations, currents, temperature, etc.) and run to failure data for predicting the Remaining Useful Lifetime of components. However, the annotation of the component wear is not always easily identifiable, thus leading to the open issue of obtaining quality labeled data and interpreting it. This paper aims to introduce and test a Decision Support System (DSS) for solving a PdM task by overcoming the above-mentioned challenge while focusing on a real industrial use case, which includes advanced processing and measuring machines. In particular, the proposed DSS is comprised of the following cornerstones: data collection, feature extraction, predictive model, cloud storage, and data analysis. Differently from the related literature, our novel approach is based on a feature extraction strategy and ML prediction model powered by specific topics collected on the lower and upper levels of the production system. Compared with respect to other state-of-the-art ML models, the experimental results demonstrated how our approach is the best trade-off between predictive performance (MAE: 0.089, MSE: 0.018, $$R^{2}: 0.868$$ R 2 : 0.868 ), computation effort (average latency of 2.353 s for learning from 400 new samples), and interpretability for the prediction of processing quality. These peculiarities, together with the integration of our ML approach into the proposed cloud-based architecture, allow the optimization of the machining quality processes by directly supporting the maintainer/operator. These advantages may impact to the optimization of maintenance schedules and to get real-time warnings about operational risks by enabling manufacturers to reduce service costs by maximizing uptime and improving productivity.

Suggested Citation

  • Riccardo Rosati & Luca Romeo & Gianalberto Cecchini & Flavio Tonetto & Paolo Viti & Adriano Mancini & Emanuele Frontoni, 2023. "From knowledge-based to big data analytic model: a novel IoT and machine learning based decision support system for predictive maintenance in Industry 4.0," Journal of Intelligent Manufacturing, Springer, vol. 34(1), pages 107-121, January.
  • Handle: RePEc:spr:joinma:v:34:y:2023:i:1:d:10.1007_s10845-022-01960-x
    DOI: 10.1007/s10845-022-01960-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-022-01960-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-022-01960-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Silke Janitza & Ender Celik & Anne-Laure Boulesteix, 2018. "A computationally fast variable importance test for random forests for high-dimensional data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(4), pages 885-915, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arafat, M.Y. & Hossain, M.J. & Alam, Md Morshed, 2024. "Machine learning scopes on microgrid predictive maintenance: Potential frameworks, challenges, and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 190(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jin Yutong & Benkeser David, 2022. "Identifying HIV sequences that escape antibody neutralization using random forests and collaborative targeted learning," Journal of Causal Inference, De Gruyter, vol. 10(1), pages 280-295, January.
    2. Hapfelmeier, Alexander & Hornung, Roman & Haller, Bernhard, 2023. "Efficient permutation testing of variable importance measures by the example of random forests," Computational Statistics & Data Analysis, Elsevier, vol. 181(C).
    3. Massimiliano Fessina & Giambattista Albora & Andrea Tacchella & Andrea Zaccaria, 2022. "Which products activate a product? An explainable machine learning approach," Papers 2212.03094, arXiv.org.
    4. Oyebayo Ridwan Olaniran & Ali Rashash R. Alzahrani, 2023. "On the Oracle Properties of Bayesian Random Forest for Sparse High-Dimensional Gaussian Regression," Mathematics, MDPI, vol. 11(24), pages 1-29, December.
    5. Araujo, Gustavo Silva & Gaglianone, Wagner Piazza, 2023. "Machine learning methods for inflation forecasting in Brazil: New contenders versus classical models," Latin American Journal of Central Banking (previously Monetaria), Elsevier, vol. 4(2).
    6. Costa, Alexandre Bonnet R. & Ferreira, Pedro Cavalcanti G. & Gaglianone, Wagner P. & Guillén, Osmani Teixeira C. & Issler, João Victor & Lin, Yihao, 2021. "Machine learning and oil price point and density forecasting," Energy Economics, Elsevier, vol. 102(C).
    7. KONDO Satoshi & MIYAKAWA Daisuke & SHIRAKI Kengo & SUGA Miki & USUKI Teppei, 2019. "Using Machine Learning to Detect and Forecast Accounting Fraud," Discussion papers 19103, Research Institute of Economy, Trade and Industry (RIETI).
    8. Gordeev, Stepan & Steinbach, Sandro, 2024. "Determinants of PTA design: Insights from machine learning," International Economics, Elsevier, vol. 178(C).
    9. Hornung, Roman & Boulesteix, Anne-Laure, 2022. "Interaction forests: Identifying and exploiting interpretable quantitative and qualitative interaction effects," Computational Statistics & Data Analysis, Elsevier, vol. 171(C).
    10. Hediger, Simon & Michel, Loris & Näf, Jeffrey, 2022. "On the use of random forest for two-sample testing," Computational Statistics & Data Analysis, Elsevier, vol. 170(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:34:y:2023:i:1:d:10.1007_s10845-022-01960-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.