IDEAS home Printed from https://ideas.repec.org/a/bpj/causin/v10y2022i1p280-295n1.html
   My bibliography  Save this article

Identifying HIV sequences that escape antibody neutralization using random forests and collaborative targeted learning

Author

Listed:
  • Jin Yutong

    (Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA, 30322, USA)

  • Benkeser David

    (Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA, 30322, USA)

Abstract

Recent studies have indicated that it is possible to protect individuals from HIV infection using passive infusion of monoclonal antibodies. However, in order for monoclonal antibodies to confer robust protection, the antibodies must be capable of neutralizing many possible strains of the virus. This is particularly challenging in the context of a highly diverse pathogen like HIV. It is therefore of great interest to leverage existing observational data sources to discover antibodies that are able to neutralize HIV viruses via residues where existing antibodies show modest protection. Such information feeds directly into the clinical trial pipeline for monoclonal antibody therapies by providing information on (i) whether and to what extent combinations of antibodies can generate superior protection and (ii) strategies for analyzing past clinical trials to identify in vivo evidence of antibody resistance. These observational data include genetic features of many diverse HIV genetic sequences, as well as in vitro measures of antibody resistance. The statistical learning problem we are interested in is developing statistical methodology that can be used to analyze these data to identify important genetic features that are significantly associated with antibody resistance. This is a challenging problem owing to the high-dimensional and strongly correlated nature of the genetic sequence data. To overcome these challenges, we propose an outcome-adaptive, collaborative targeted minimum loss-based estimation approach using random forests. We demonstrate via simulation that the approach enjoys important statistical benefits over existing approaches in terms of bias, mean squared error, and type I error. We apply the approach to the Compile, Analyze, and Tally Nab Panels database to identify AA positions that are potentially causally related to resistance to neutralization by several different antibodies.

Suggested Citation

  • Jin Yutong & Benkeser David, 2022. "Identifying HIV sequences that escape antibody neutralization using random forests and collaborative targeted learning," Journal of Causal Inference, De Gruyter, vol. 10(1), pages 280-295, January.
  • Handle: RePEc:bpj:causin:v:10:y:2022:i:1:p:280-295:n:1
    DOI: 10.1515/jci-2021-0053
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/jci-2021-0053
    Download Restriction: no

    File URL: https://libkey.io/10.1515/jci-2021-0053?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Silke Janitza & Ender Celik & Anne-Laure Boulesteix, 2018. "A computationally fast variable importance test for random forests for high-dimensional data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(4), pages 885-915, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Costa, Alexandre Bonnet R. & Ferreira, Pedro Cavalcanti G. & Gaglianone, Wagner P. & Guillén, Osmani Teixeira C. & Issler, João Victor & Lin, Yihao, 2021. "Machine learning and oil price point and density forecasting," Energy Economics, Elsevier, vol. 102(C).
    2. Riccardo Rosati & Luca Romeo & Gianalberto Cecchini & Flavio Tonetto & Paolo Viti & Adriano Mancini & Emanuele Frontoni, 2023. "From knowledge-based to big data analytic model: a novel IoT and machine learning based decision support system for predictive maintenance in Industry 4.0," Journal of Intelligent Manufacturing, Springer, vol. 34(1), pages 107-121, January.
    3. KONDO Satoshi & MIYAKAWA Daisuke & SHIRAKI Kengo & SUGA Miki & USUKI Teppei, 2019. "Using Machine Learning to Detect and Forecast Accounting Fraud," Discussion papers 19103, Research Institute of Economy, Trade and Industry (RIETI).
    4. Hornung, Roman & Boulesteix, Anne-Laure, 2022. "Interaction forests: Identifying and exploiting interpretable quantitative and qualitative interaction effects," Computational Statistics & Data Analysis, Elsevier, vol. 171(C).
    5. Araujo, Gustavo Silva & Gaglianone, Wagner Piazza, 2023. "Machine learning methods for inflation forecasting in Brazil: New contenders versus classical models," Latin American Journal of Central Banking (previously Monetaria), Elsevier, vol. 4(2).
    6. Hapfelmeier, Alexander & Hornung, Roman & Haller, Bernhard, 2023. "Efficient permutation testing of variable importance measures by the example of random forests," Computational Statistics & Data Analysis, Elsevier, vol. 181(C).
    7. Massimiliano Fessina & Giambattista Albora & Andrea Tacchella & Andrea Zaccaria, 2022. "Which products activate a product? An explainable machine learning approach," Papers 2212.03094, arXiv.org.
    8. Oyebayo Ridwan Olaniran & Ali Rashash R. Alzahrani, 2023. "On the Oracle Properties of Bayesian Random Forest for Sparse High-Dimensional Gaussian Regression," Mathematics, MDPI, vol. 11(24), pages 1-29, December.
    9. Hediger, Simon & Michel, Loris & Näf, Jeffrey, 2022. "On the use of random forest for two-sample testing," Computational Statistics & Data Analysis, Elsevier, vol. 170(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:causin:v:10:y:2022:i:1:p:280-295:n:1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.