Using Machine Learning to Detect and Forecast Accounting Fraud
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2018.
"Double/debiased machine learning for treatment and structural parameters,"
Econometrics Journal, Royal Economic Society, vol. 21(1), pages 1-68, February.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2017. "Double/Debiased Machine Learning for Treatment and Structural Parameters," NBER Working Papers 23564, National Bureau of Economic Research, Inc.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney K. Newey & James Robins, 2017. "Double/debiased machine learning for treatment and structural parameters," CeMMAP working papers CWP28/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney K. Newey & James Robins, 2017. "Double/debiased machine learning for treatment and structural parameters," CeMMAP working papers 28/17, Institute for Fiscal Studies.
- Dechow, Patricia & Ge, Weili & Schrand, Catherine, 2010. "Understanding earnings quality: A review of the proxies, their determinants and their consequences," Journal of Accounting and Economics, Elsevier, vol. 50(2-3), pages 344-401, December.
- Patricia M. Dechow & Weili Ge & Chad R. Larson & Richard G. Sloan, 2011. "Predicting Material Accounting Misstatements," Contemporary Accounting Research, John Wiley & Sons, vol. 28(1), pages 17-82, March.
- Song Mingzi & Naoto Oshiro & Akinobu Shuto, 2016. "Predicting accounting fraud: Evidence from Japan (Accepted by The Japanese Accounting Review)," CARF F-Series CARF-F-402, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
- Silke Janitza & Ender Celik & Anne-Laure Boulesteix, 2018. "A computationally fast variable importance test for random forests for high-dimensional data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(4), pages 885-915, December.
- Mingzi Song & Naoto Oshiro & Akinobu Shuto, 2016. "Predicting Accounting Fraud: Evidence from Japan," The Japanese Accounting Review, Research Institute for Economics & Business Administration, Kobe University, vol. 6, pages 17-63, December.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Vitezslav Titl & Deni Mazrekaj & Fritz Schiltz, 2024.
"Identifying Politically Connected Firms: A Machine Learning Approach,"
Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 86(1), pages 137-155, February.
- Vitezslav Titl & Fritz Schiltz, 2021. "Identifying Politically Connected Firms: A Machine Learning Approach," Working Papers 2110, Utrecht School of Economics.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Alessandro Paolo Rigamonti & Giulio Greco & Mariarita Pierotti & Alessandro Capocchi, 2024. "Macroeconomic uncertainty and earnings management: evidence from commodity firms," Review of Quantitative Finance and Accounting, Springer, vol. 62(4), pages 1615-1649, May.
- Yuping Jia & Laurence Van Lent & Yachang Zeng, 2014. "Masculinity, Testosterone, and Financial Misreporting," Journal of Accounting Research, Wiley Blackwell, vol. 52(5), pages 1195-1246, December.
- Michael K. Fung, 2019. "Fraudulent Financial Reporting and Technological Capability in the Information Technology Sector: A Resource-Based Perspective," Journal of Business Ethics, Springer, vol. 156(2), pages 577-589, May.
- Badolato, Patrick G. & Donelson, Dain C. & Ege, Matthew, 2014. "Audit committee financial expertise and earnings management: The role of status," Journal of Accounting and Economics, Elsevier, vol. 58(2), pages 208-230.
- Camacho-Miñano, María-del-Mar & Campa, Domenico, 2014. "Integrity of financial information as a determinant of the outcome of a bankruptcy procedure," International Review of Law and Economics, Elsevier, vol. 37(C), pages 76-85.
- Matthias Breuer & Harm H. Schütt, 2023. "Accounting for uncertainty: an application of Bayesian methods to accruals models," Review of Accounting Studies, Springer, vol. 28(2), pages 726-768, June.
- Mingzi Song & Naoto Oshiro & Akinobu Shuto, 2016. "Predicting Accounting Fraud: Evidence from Japan," The Japanese Accounting Review, Research Institute for Economics & Business Administration, Kobe University, vol. 6, pages 17-63, December.
- Jin, Justin Yiqiang & Kanagaretnam, Kiridaran & Lobo, Gerald J. & Mathieu, Robert, 2017. "Social capital and bank stability," Journal of Financial Stability, Elsevier, vol. 32(C), pages 99-114.
- Jing He, 2022. "Executive Network Centrality and Corporate Reporting," Management Science, INFORMS, vol. 68(2), pages 1512-1536, February.
- Ye, Kangtao & Cheng, Yingli & Gao, Jingyu, 2014. "How individual auditor characteristics impact the likelihood of audit failure: Evidence from China," Advances in accounting, Elsevier, vol. 30(2), pages 394-401.
- Dan Amiram & Zahn Bozanic & James D. Cox & Quentin Dupont & Jonathan M. Karpoff & Richard Sloan, 2018. "Financial reporting fraud and other forms of misconduct: a multidisciplinary review of the literature," Review of Accounting Studies, Springer, vol. 23(2), pages 732-783, June.
- Theoharry Grammatikos & Nikolaos I. Papanikolaou, 2021. "Applying Benford’s Law to Detect Accounting Data Manipulation in the Banking Industry," Journal of Financial Services Research, Springer;Western Finance Association, vol. 59(1), pages 115-142, April.
- Raghunandan, Aneesh, 2021. "Financial misconduct and employee mistreatment: evidence from wage theft," LSE Research Online Documents on Economics 109863, London School of Economics and Political Science, LSE Library.
- Patricia M. Dechow & Amy P. Hutton & Jung Hoon Kim & Richard G. Sloan, 2012. "Detecting Earnings Management: A New Approach," Journal of Accounting Research, Wiley Blackwell, vol. 50(2), pages 275-334, May.
- Du, Kai & Huddart, Steven & Xue, Lingzhou & Zhang, Yifan, 2020. "Using a hidden Markov model to measure earnings quality," Journal of Accounting and Economics, Elsevier, vol. 69(2).
- Justin J. Hopkins & Edward L. Maydew & Mohan Venkatachalam, 2015. "Corporate General Counsel and Financial Reporting Quality," Management Science, INFORMS, vol. 61(1), pages 129-145, January.
- Nguyet T. M. Nguyen & Abdullah Iqbal & Radha K. Shiwakoti, 2022. "The context of earnings management and its ability to predict future stock returns," Review of Quantitative Finance and Accounting, Springer, vol. 59(1), pages 123-169, July.
- Jian Cao & Feng Chen & Julia L. Higgs, 2016. "Late for a very important date: financial reporting and audit implications of late 10-K filings," Review of Accounting Studies, Springer, vol. 21(2), pages 633-671, June.
- Pamela Brandes & Ravi Dharwadkar & Jonathan F. Ross & Linna Shi, 2022. "Time is of the Essence!: Retired Independent Directors’ Contributions to Board Effectiveness," Journal of Business Ethics, Springer, vol. 179(3), pages 767-793, September.
- Brandon Gipper & Luzi Hail & Christian Leuz, 2017.
"On the Economics of Audit Partner Tenure and Rotation: Evidence from PCAOB Data,"
NBER Working Papers
24018, National Bureau of Economic Research, Inc.
- Gipper, Brandon & Hail, Luzi & Leuz, Christian, 2018. "On the economics of audit partner tenure and rotation: Evidence from PCAOB data," CFS Working Paper Series 608, Center for Financial Studies (CFS).
- Gipper, Brandon & Hail, Luzi & Leuz, Christian, 2017. "On the Economics of Audit Partner Tenure and Rotation: Evidence from PCAOB Data," Research Papers repec:ecl:stabus:3588, Stanford University, Graduate School of Business.
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-BIG-2020-01-06 (Big Data)
- NEP-CMP-2020-01-06 (Computational Economics)
- NEP-FOR-2020-01-06 (Forecasting)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eti:dpaper:19103. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: TANIMOTO, Toko (email available below). General contact details of provider: https://edirc.repec.org/data/rietijp.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.