IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i2p380-d1317733.html
   My bibliography  Save this article

Wind Power Bidding Based on an Ensemble Differential Evolution Algorithm with a Problem-Specific Constraint-Handling Technique

Author

Listed:
  • Chao Huang

    (School of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing 100083, China
    Shunde Innovation School, University of Science and Technology Beijing, Foshan 528399, China)

  • Zhenyu Zhao

    (School of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing 100083, China)

  • Qingwen Li

    (Department of Civil Engineering, University of Science and Technology Beijing, Beijing 100083, China)

  • Xiong Luo

    (School of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing 100083, China)

  • Long Wang

    (School of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing 100083, China)

Abstract

The intermittent nature of wind power generation induces great challenges for power bidding in the electricity market. The deployment of battery energy storage can improve flexibility for power bidding. This paper investigates an optimal power bidding strategy for a wind–storage hybrid power plant in the day-ahead electricity market. To handle the challenges of the uncertainties of wind power generation and electricity prices, the optimal bidding problem is formulated as a risk-aware scenario-based stochastic programming, in which a number of scenarios are generated using a copula-based approach to represent the uncertainties. These scenarios consider the temporal correlation of wind power generation and electricity prices between consecutive time intervals. In the stochastic programming, a more practical but nonlinear battery operation cost function is considered, which leads to a nonlinear constrained optimization problem. To solve the nonlinear constrained optimization problem, an ensemble differential evolution (EDE) algorithm is proposed, which makes use of the merits of an ensemble of mutant operators to generate mutant vectors. Moreover, a problem-specific constraint-handling technique is developed. To validate the effectiveness of the proposed EDE algorithm, it is compared with state-of-the-art DE-based algorithms for constrained optimization problems, including a constrained composite DE (C 2 oDE) algorithm and a novel DE (NDE) algorithm. The experimental results demonstrate that the EDE algorithm is much more reliable and much faster in finding a better bidding strategy against benchmarking algorithms. More precisely, the average values of the success rate are 0.893, 0.667, and 0.96 for C 2 oDE, NDE, and EDE, respectively. Compared to C 2 oDE and NDE, the average value of the mean number of function evaluations to succeed with EDE is reduced by 76% and 59%, respectively.

Suggested Citation

  • Chao Huang & Zhenyu Zhao & Qingwen Li & Xiong Luo & Long Wang, 2024. "Wind Power Bidding Based on an Ensemble Differential Evolution Algorithm with a Problem-Specific Constraint-Handling Technique," Energies, MDPI, vol. 17(2), pages 1-14, January.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:2:p:380-:d:1317733
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/2/380/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/2/380/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Janke, Leandro & McDonagh, Shane & Weinrich, Sören & Murphy, Jerry & Nilsson, Daniel & Hansson, Per-Anders & Nordberg, Åke, 2020. "Optimizing power-to-H2 participation in the Nord Pool electricity market: Effects of different bidding strategies on plant operation," Renewable Energy, Elsevier, vol. 156(C), pages 820-836.
    2. Ali Wagdy Mohamed, 2018. "A novel differential evolution algorithm for solving constrained engineering optimization problems," Journal of Intelligent Manufacturing, Springer, vol. 29(3), pages 659-692, March.
    3. Nitsch, Felix & Deissenroth-Uhrig, Marc & Schimeczek, Christoph & Bertsch, Valentin, 2021. "Economic evaluation of battery storage systems bidding on day-ahead and automatic frequency restoration reserves markets," Applied Energy, Elsevier, vol. 298(C).
    4. Shafiekhani, Morteza & Ahmadi, Abdollah & Homaee, Omid & Shafie-khah, Miadreza & Catalão, João P.S., 2022. "Optimal bidding strategy of a renewable-based virtual power plant including wind and solar units and dispatchable loads," Energy, Elsevier, vol. 239(PD).
    5. Jun Dong & Xihao Dou & Dongran Liu & Aruhan Bao & Dongxue Wang & Yunzhou Zhang, 2023. "Energy Trading Strategy of Distributed Energy Resources Aggregator in Day-Ahead Market Considering Risk Preference Behaviors," Energies, MDPI, vol. 16(4), pages 1-27, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pavić, Ivan & Čović, Nikolina & Pandžić, Hrvoje, 2022. "PV–battery-hydrogen plant: Cutting green hydrogen costs through multi-market positioning," Applied Energy, Elsevier, vol. 328(C).
    2. Sergio Cantillo-Luna & Ricardo Moreno-Chuquen & David Celeita & George J. Anders, 2024. "A Stochastic Decision-Making Tool Suite for Distributed Energy Resources Integration in Energy Markets," Energies, MDPI, vol. 17(10), pages 1-28, May.
    3. Bedoić, Robert & Dorotić, Hrvoje & Schneider, Daniel Rolph & Čuček, Lidija & Ćosić, Boris & Pukšec, Tomislav & Duić, Neven, 2021. "Synergy between feedstock gate fee and power-to-gas: An energy and economic analysis of renewable methane production in a biogas plant," Renewable Energy, Elsevier, vol. 173(C), pages 12-23.
    4. Lau, Jat-Syu & Jiang, Yihuo & Li, Ziyuan & Qian, Qian, 2023. "Stochastic trading of storage systems in short term electricity markets considering intraday demand response market," Energy, Elsevier, vol. 280(C).
    5. Kuttner, Leopold, 2022. "Integrated scheduling and bidding of power and reserve of energy resource aggregators with storage plants," Applied Energy, Elsevier, vol. 321(C).
    6. Songkai Wang & Rong Jia & Xiaoyu Shi & Chang Luo & Yuan An & Qiang Huang & Pengcheng Guo & Xueyan Wang & Xuewen Lei, 2022. "Research on Capacity Allocation Optimization of Commercial Virtual Power Plant (CVPP)," Energies, MDPI, vol. 15(4), pages 1-18, February.
    7. Zhang, Xinyue & Guo, Xiaopeng & Zhang, Xingping, 2023. "Bidding modes for renewable energy considering electricity-carbon integrated market mechanism based on multi-agent hybrid game," Energy, Elsevier, vol. 263(PA).
    8. Guo, Hongye & Chen, Qixin & Shahidehpour, Mohammad & Xia, Qing & Kang, Chongqing, 2022. "Bidding behaviors of GENCOs under bounded rationality with renewable energy," Energy, Elsevier, vol. 250(C).
    9. Lin, Xiaojie & Lin, Xueru & Zhong, Wei & Zhou, Yi, 2023. "Predictive operation optimization of multi-energy virtual power plant considering behavior uncertainty of diverse stakeholders," Energy, Elsevier, vol. 280(C).
    10. Wenchao Yi & Liang Gao & Zhi Pei & Jiansha Lu & Yong Chen, 2021. "ε Constrained differential evolution using halfspace partition for optimization problems," Journal of Intelligent Manufacturing, Springer, vol. 32(1), pages 157-178, January.
    11. Wu, Shengyang & Ding, Zhaohao & Wang, Jingyu & Shi, Dongyuan, 2023. "Unveiling bidding uncertainties in electricity markets: A Bayesian deep learning framework based on accurate variational inference," Energy, Elsevier, vol. 276(C).
    12. Wang, Jian & Ilea, Valentin & Bovo, Cristian & Xie, Ning & Wang, Yong, 2023. "Optimal self-scheduling for a multi-energy virtual power plant providing energy and reserve services under a holistic market framework," Energy, Elsevier, vol. 278(PB).
    13. He, Jiao & Jin, Xin & Xie, S.Y. & Cao, Le & Lin, Yifan & Wang, Ning, 2019. "Multi-body dynamics modeling and TMD optimization based on the improved AFSA for floating wind turbines," Renewable Energy, Elsevier, vol. 141(C), pages 305-321.
    14. Mostafa Darvishi & Mehrdad Tahmasebi & Ehsan Shokouhmand & Jagadeesh Pasupuleti & Pitshou Bokoro & Jwan Satei Raafat, 2023. "Optimal Operation of Sustainable Virtual Power Plant Considering the Amount of Emission in the Presence of Renewable Energy Sources and Demand Response," Sustainability, MDPI, vol. 15(14), pages 1-25, July.
    15. Ju, Liwei & Lv, ShuoShuo & Zhang, Zheyu & Li, Gen & Gan, Wei & Fang, Jiangpeng, 2024. "Data-driven two-stage robust optimization dispatching model and benefit allocation strategy for a novel virtual power plant considering carbon-green certificate equivalence conversion mechanism," Applied Energy, Elsevier, vol. 362(C).
    16. Wu, Jiahui & Wang, Jidong & Kong, Xiangyu, 2022. "Strategic bidding in a competitive electricity market: An intelligent method using Multi-Agent Transfer Learning based on reinforcement learning," Energy, Elsevier, vol. 256(C).
    17. Khalid Abdulaziz Alnowibet & Salem Mahdi & Mahmoud El-Alem & Mohamed Abdelawwad & Ali Wagdy Mohamed, 2022. "Guided Hybrid Modified Simulated Annealing Algorithm for Solving Constrained Global Optimization Problems," Mathematics, MDPI, vol. 10(8), pages 1-25, April.
    18. Aggarwal, Sakshi & Mishra, Krishn K., 2023. "X-MODE: Extended Multi-operator Differential Evolution algorithm," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 211(C), pages 85-108.
    19. Wu, Lin & Hou, Zhengmeng & Luo, Zhifeng & Huang, Liangchao & Xiong, Ying & Mehmood, Faisal & Liu, Jianhua & Sun, Wei & Xie, Yachen, 2023. "Efficiency assessment of underground biomethanation with hydrogen and carbon dioxide in depleted gas reservoirs: A biogeochemical simulation," Energy, Elsevier, vol. 283(C).
    20. Raghav Prasad Parouha & Pooja Verma, 2022. "An innovative hybrid algorithm for bound-unconstrained optimization problems and applications," Journal of Intelligent Manufacturing, Springer, vol. 33(5), pages 1273-1336, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:2:p:380-:d:1317733. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.