IDEAS home Printed from https://ideas.repec.org/a/taf/uiiexx/v50y2018i2p99-111.html
   My bibliography  Save this article

Detection and clustering of mixed-type defect patterns in wafer bin maps

Author

Listed:
  • Jinho Kim
  • Youngmin Lee
  • Heeyoung Kim

Abstract

In semiconductor manufacturing, a wafer bin map (WBM) is a map that consists of assigned bin values for dies based on wafer test results (e.g., value 1 for good dies and value 0 for defective dies). The bin values of adjacent dies are often spatially correlated, forming some systematic defect patterns. These non-random defect patterns occur due to assignable causes; therefore, it is important to identify these systematic defect patterns in order to know the root causes of failure and to take actions for quality management and yield enhancement. In particular, as wafer fabrication processes have become more complicated, mixed-type defect patterns (two or more different types of defect patterns occur simultaneously in a single wafer) occur more frequently than in the past. For more effective classification of wafers based on their defect patterns, mixed-type defect patterns need to be detected and separated into several clusters of different patterns; subsequently, each cluster of a single pattern can be matched to a well-known defect type (e.g., scratch, ring) or it may indicate the emergence of a new defect pattern. There are several challenges to be overcome in the detection and clustering of mixed-type defect patterns. These include (i) the separation of random defects from systematic defect patterns; (ii) determining the number of clusters; and (iii) the clustering of defect patterns of complex shapes. To address these challenges, in this article, we propose a new framework for detecting and clustering mixed-type defect patterns. First, we propose a new filtering method, called the connected-path filtering method, to denoise WBMs. Subsequently, we adopt the infinite warped mixture model for the clustering of mixed-type defect patterns; this model is flexible in its ability to deal with complex shapes of defect patterns; furthermore, the number of clusters does not need to be specified in advance but is automatically determined simultaneously during the clustering procedure. We validate the proposed method using real data from a semiconductor company. The experimental results demonstrate the effectiveness of the proposed method in estimating the number of underlying clusters as well as in the clustering of mixed-type defect patterns.

Suggested Citation

  • Jinho Kim & Youngmin Lee & Heeyoung Kim, 2018. "Detection and clustering of mixed-type defect patterns in wafer bin maps," IISE Transactions, Taylor & Francis Journals, vol. 50(2), pages 99-111, February.
  • Handle: RePEc:taf:uiiexx:v:50:y:2018:i:2:p:99-111
    DOI: 10.1080/24725854.2017.1386337
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/24725854.2017.1386337
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/24725854.2017.1386337?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Seyoung Park & Jaeyeon Jang & Chang Ouk Kim, 2021. "Discriminative feature learning and cluster-based defect label reconstruction for reducing uncertainty in wafer bin map labels," Journal of Intelligent Manufacturing, Springer, vol. 32(1), pages 251-263, January.
    2. Tae San Kim & Jong Wook Lee & Won Kyung Lee & So Young Sohn, 2022. "Novel method for detection of mixed-type defect patterns in wafer maps based on a single shot detector algorithm," Journal of Intelligent Manufacturing, Springer, vol. 33(6), pages 1715-1724, August.
    3. Tongwha Kim & Kamran Behdinan, 2023. "Advances in machine learning and deep learning applications towards wafer map defect recognition and classification: a review," Journal of Intelligent Manufacturing, Springer, vol. 34(8), pages 3215-3247, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:uiiexx:v:50:y:2018:i:2:p:99-111. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/uiie .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.