IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v31y2020i7d10.1007_s10845-018-1397-8.html
   My bibliography  Save this article

An effective approach for causal variables analysis in diesel engine production by using mutual information and network deconvolution

Author

Listed:
  • Wei Qin

    (Shanghai Jiao Tong University)

  • Dongye Zha

    (Shanghai Jiao Tong University)

  • Jie Zhang

    (Donghua University)

Abstract

The effective control of the power consistency, which is one of the most important quality indicators of diesel engine, plays a decisive role for improving the competitiveness of the products. The widely used sensors and other data acquisition equipment make the “data-driven quality control” become possible. However, how to determine the highly related parameters with the engine power from massive captured manufacturing data and effectively discriminated the direct and indirect dependencies between these variables are still challenging. This paper proposed a feature selection algorithm named NMI-ND which uses network deconvolution (ND) to infer causal correlations among various diesel engine manufacturing parameters from the observed correlations based on normalized mutual information (NMI). The proposed algorithm is thoroughly evaluated through the experimental study by comparing it with other representative feature selection algorithms. The comparison demonstrates that NMI-ND performs better in both effectiveness and efficiency.

Suggested Citation

  • Wei Qin & Dongye Zha & Jie Zhang, 2020. "An effective approach for causal variables analysis in diesel engine production by using mutual information and network deconvolution," Journal of Intelligent Manufacturing, Springer, vol. 31(7), pages 1661-1671, October.
  • Handle: RePEc:spr:joinma:v:31:y:2020:i:7:d:10.1007_s10845-018-1397-8
    DOI: 10.1007/s10845-018-1397-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-018-1397-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-018-1397-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Junliang Wang & Jie Zhang, 2016. "Big data analytics for forecasting cycle time in semiconductor wafer fabrication system," International Journal of Production Research, Taylor & Francis Journals, vol. 54(23), pages 7231-7244, December.
    2. Shujie Liu & Yawei Hu & Chao Li & Huitian Lu & Hongchao Zhang, 2017. "Machinery condition prediction based on wavelet and support vector machine," Journal of Intelligent Manufacturing, Springer, vol. 28(4), pages 1045-1055, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christopher Hagedorn & Johannes Huegle & Rainer Schlosser, 2022. "Understanding unforeseen production downtimes in manufacturing processes using log data-driven causal reasoning," Journal of Intelligent Manufacturing, Springer, vol. 33(7), pages 2027-2043, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shijie Guo & Shufeng Tang & Dongsheng Zhang, 2019. "A Recognition Methodology for the Key Geometric Errors of a Multi-Axis Machine Tool Based on Accuracy Retentivity Analysis," Complexity, Hindawi, vol. 2019, pages 1-21, November.
    2. M. López-Campos & F. Kristjanpoller & P. Viveros & R. Pascual, 2018. "Reliability Assessment Methodology for Massive Manufacturing Using Multi-Function Equipment," Complexity, Hindawi, vol. 2018, pages 1-8, February.
    3. Andhi Indira Kusuma & Yi-Mei Huang, 2023. "Product quality prediction in pulsed laser cutting of silicon steel sheet using vibration signals and deep neural network," Journal of Intelligent Manufacturing, Springer, vol. 34(4), pages 1683-1699, April.
    4. Claudio Vitari & Elisabetta Raguseo, 2019. "Big data analytics business value and firm performance: Linking with environmental context," Post-Print hal-02293765, HAL.
    5. Deepam Goyal & Anurag Choudhary & B. S. Pabla & S. S. Dhami, 2020. "Support vector machines based non-contact fault diagnosis system for bearings," Journal of Intelligent Manufacturing, Springer, vol. 31(5), pages 1275-1289, June.
    6. Purva Grover & Arpan Kumar Kar, 2017. "Big Data Analytics: A Review on Theoretical Contributions and Tools Used in Literature," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 18(3), pages 203-229, September.
    7. Marvin Carl May & Alexander Albers & Marc David Fischer & Florian Mayerhofer & Louis Schäfer & Gisela Lanza, 2021. "Queue Length Forecasting in Complex Manufacturing Job Shops," Forecasting, MDPI, vol. 3(2), pages 1-17, May.
    8. Christian Kubik & Sebastian Michael Knauer & Peter Groche, 2022. "Smart sheet metal forming: importance of data acquisition, preprocessing and transformation on the performance of a multiclass support vector machine for predicting wear states during blanking," Journal of Intelligent Manufacturing, Springer, vol. 33(1), pages 259-282, January.
    9. Beixin Xia & Tong Tian & Yan Gao & Mingyue Zhang & Yunfang Peng, 2022. "A Dynamic Dispatching Method for Large-Scale Interbay Material Handling Systems of Semiconductor FAB," Sustainability, MDPI, vol. 14(21), pages 1-19, October.
    10. Nadine Bachmann & Shailesh Tripathi & Manuel Brunner & Herbert Jodlbauer, 2022. "The Contribution of Data-Driven Technologies in Achieving the Sustainable Development Goals," Sustainability, MDPI, vol. 14(5), pages 1-33, February.
    11. Anshuman Kumar Sahu & Siba Sankar Mahapatra, 2021. "Prediction and optimization of performance measures in electrical discharge machining using rapid prototyping tool electrodes," Journal of Intelligent Manufacturing, Springer, vol. 32(8), pages 2125-2145, December.
    12. Lixin Cheng & Qiuhua Tang & Zikai Zhang & Shiqian Wu, 2021. "Data mining for fast and accurate makespan estimation in machining workshops," Journal of Intelligent Manufacturing, Springer, vol. 32(2), pages 483-500, February.
    13. Zilong Zhuang & Liangxun Guo & Zizhao Huang & Yanning Sun & Wei Qin & Zhao-Hui Sun, 2021. "DyS-IENN: a novel multiclass imbalanced learning method for early warning of tardiness in rocket final assembly process," Journal of Intelligent Manufacturing, Springer, vol. 32(8), pages 2197-2207, December.
    14. Raut, Rakesh D. & Mangla, Sachin Kumar & Narwane, Vaibhav S. & Dora, Manoj & Liu, Mengqi, 2021. "Big Data Analytics as a mediator in Lean, Agile, Resilient, and Green (LARG) practices effects on sustainable supply chains," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 145(C).
    15. Yu-Cheng Wang & Horng-Ren Tsai & Toly Chen, 2021. "A Selectively Fuzzified Back Propagation Network Approach for Precisely Estimating the Cycle Time Range in Wafer Fabrication," Mathematics, MDPI, vol. 9(12), pages 1-18, June.
    16. Yun Bai & Zhenzhong Sun & Bo Zeng & Jianyu Long & Lin Li & José Valente Oliveira & Chuan Li, 2019. "A comparison of dimension reduction techniques for support vector machine modeling of multi-parameter manufacturing quality prediction," Journal of Intelligent Manufacturing, Springer, vol. 30(5), pages 2245-2256, June.
    17. Lei Fu & Yanding Wei & Sheng Fang & Xiaojun Zhou & Junqiang Lou, 2017. "Condition Monitoring for Roller Bearings of Wind Turbines Based on Health Evaluation under Variable Operating States," Energies, MDPI, vol. 10(10), pages 1-21, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:31:y:2020:i:7:d:10.1007_s10845-018-1397-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.