IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v31y2020i3d10.1007_s10845-019-01470-3.html
   My bibliography  Save this article

Genetic algorithms applied to integration and optimization of billing and picking processes

Author

Listed:
  • Anderson Rogério Faia Pinto

    (University of São Paulo)

  • Marcelo Seido Nagano

    (University of São Paulo)

Abstract

This article intends to provide a computational tool that integrates and provides optimized solutions to two interdependent problems called Optimized Billing Sequencing (OBS) and Optimized Picking Sequence (OPS). These problems are addressed separately by the existing literature and refer respectively to the optimization of billing and picking processes in a typical warehouse with low-level picker-to-parts system. Integration literature is, therefore, limited and there is a demand for more robust OBS/OPS optimization methods. This approach will deal with practical dilemmas that have not been addressed by researchers yet to propose an extension to the OBS model by Pinto et al. (J Intell Manuf 29(2):405–422, 2018) along with a specific variation of the Order Batching and Sequencing Problem. The premise is to prove to managers the possibility of making more consistent decisions about the trade-off between the level of customer service and the warehouse efficiency. The proposed tool is formulated by the integration of two Genetic Algorithms called GA-OBS and GA-OPS where GA-OBS maximizes the order portfolio billing and generates the picking order to the OPS, whereas GA-OPS comprises the iteration of batch and routing algorithms to minimize picking total time and cost to the OPS. Experiments with problems with different complexity levels showed that the proposed tool produces solutions of satisfactory quality to OBS/OPS. The approach proposed fills a gap in the literature and makes innovative contributions to the development of more suitable optimization methods to the reality of warehouses.

Suggested Citation

  • Anderson Rogério Faia Pinto & Marcelo Seido Nagano, 2020. "Genetic algorithms applied to integration and optimization of billing and picking processes," Journal of Intelligent Manufacturing, Springer, vol. 31(3), pages 641-659, March.
  • Handle: RePEc:spr:joinma:v:31:y:2020:i:3:d:10.1007_s10845-019-01470-3
    DOI: 10.1007/s10845-019-01470-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-019-01470-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-019-01470-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Scholz, André & Schubert, Daniel & Wäscher, Gerhard, 2017. "Order picking with multiple pickers and due dates – Simultaneous solution of Order Batching, Batch Assignment and Sequencing, and Picker Routing Problems," European Journal of Operational Research, Elsevier, vol. 263(2), pages 461-478.
    2. Ashkan Mohsenzadeh Ledari & Seyed Hamid Reza Pasandideh & Mehrdad Nouri Koupaei, 2018. "A new newsvendor policy model for dual-sourcing supply chains by considering disruption risk and special order," Journal of Intelligent Manufacturing, Springer, vol. 29(1), pages 237-244, January.
    3. Chen, Tzu-Li & Cheng, Chen-Yang & Chen, Yin-Yann & Chan, Li-Kai, 2015. "An efficient hybrid algorithm for integrated order batching, sequencing and routing problem," International Journal of Production Economics, Elsevier, vol. 159(C), pages 158-167.
    4. Van Nieuwenhuyse, Inneke & de Koster, René B.M., 2009. "Evaluating order throughput time in 2-block warehouses with time window batching," International Journal of Production Economics, Elsevier, vol. 121(2), pages 654-664, October.
    5. Eric H. Grosse & Christoph H. Glock & W. Patrick Neumann, 2017. "Human factors in order picking: a content analysis of the literature," International Journal of Production Research, Taylor & Francis Journals, vol. 55(5), pages 1260-1276, March.
    6. Chen, Mu-Chen & Wu, Hsiao-Pin, 2005. "An association-based clustering approach to order batching considering customer demand patterns," Omega, Elsevier, vol. 33(4), pages 333-343, August.
    7. Gu, Jinxiang & Goetschalckx, Marc & McGinnis, Leon F., 2007. "Research on warehouse operation: A comprehensive review," European Journal of Operational Research, Elsevier, vol. 177(1), pages 1-21, February.
    8. Çağla Cergibozan & A. Serdar Tasan, 2019. "Order batching operations: an overview of classification, solution techniques, and future research," Journal of Intelligent Manufacturing, Springer, vol. 30(1), pages 335-349, January.
    9. René B. M. De Koster & Andrew L. Johnson & Debjit Roy, 2017. "Warehouse design and management," International Journal of Production Research, Taylor & Francis Journals, vol. 55(21), pages 6327-6330, November.
    10. Gu, Jinxiang & Goetschalckx, Marc & McGinnis, Leon F., 2010. "Research on warehouse design and performance evaluation: A comprehensive review," European Journal of Operational Research, Elsevier, vol. 203(3), pages 539-549, June.
    11. Hansen, Pierre & Mladenovic, Nenad, 2001. "Variable neighborhood search: Principles and applications," European Journal of Operational Research, Elsevier, vol. 130(3), pages 449-467, May.
    12. Petersen, Charles G. & Aase, Gerald, 2004. "A comparison of picking, storage, and routing policies in manual order picking," International Journal of Production Economics, Elsevier, vol. 92(1), pages 11-19, November.
    13. Ravi Shankar Kumar & M. K. Tiwari & A. Goswami, 2016. "Two-echelon fuzzy stochastic supply chain for the manufacturer–buyer integrated production–inventory system," Journal of Intelligent Manufacturing, Springer, vol. 27(4), pages 875-888, August.
    14. Tülin İnkaya & Mehmet Akansel, 2017. "Coordinated scheduling of the transfer lots in an assembly-type supply chain: a genetic algorithm approach," Journal of Intelligent Manufacturing, Springer, vol. 28(4), pages 1005-1015, April.
    15. Henn, Sebastian & Wäscher, Gerhard, 2012. "Tabu search heuristics for the order batching problem in manual order picking systems," European Journal of Operational Research, Elsevier, vol. 222(3), pages 484-494.
    16. Diabat, Ali, 2014. "Hybrid algorithm for a vendor managed inventory system in a two-echelon supply chain," European Journal of Operational Research, Elsevier, vol. 238(1), pages 114-121.
    17. Jianbin Li & Rihuan Huang & James B. Dai, 2017. "Joint optimisation of order batching and picker routing in the online retailer’s warehouse in China," International Journal of Production Research, Taylor & Francis Journals, vol. 55(2), pages 447-461, January.
    18. Anderson Rogério Faia Pinto & Antonio Fernando Crepaldi & Marcelo Seido Nagano, 2018. "A Genetic Algorithm applied to pick sequencing for billing," Journal of Intelligent Manufacturing, Springer, vol. 29(2), pages 405-422, February.
    19. Sebastian Henn & Gerhard Wäscher, 2010. "Tabu Search Heuristics for the Order Batching Problem in Manual Order Picking Systems," FEMM Working Papers 100007, Otto-von-Guericke University Magdeburg, Faculty of Economics and Management.
    20. Thomas Chabot & Rahma Lahyani & Leandro C. Coelho & Jacques Renaud, 2017. "Order picking problems under weight, fragility and category constraints," International Journal of Production Research, Taylor & Francis Journals, vol. 55(21), pages 6361-6379, November.
    21. Gibson, David R. & Sharp, Gunter P., 1992. "Order batching procedures," European Journal of Operational Research, Elsevier, vol. 58(1), pages 57-67, April.
    22. de Koster, Rene & Le-Duc, Tho & Roodbergen, Kees Jan, 2007. "Design and control of warehouse order picking: A literature review," European Journal of Operational Research, Elsevier, vol. 182(2), pages 481-501, October.
    23. Helsgaun, Keld, 2000. "An effective implementation of the Lin-Kernighan traveling salesman heuristic," European Journal of Operational Research, Elsevier, vol. 126(1), pages 106-130, October.
    24. Grosse, E. H. & Glock, C. H. & Neumann, W. P., 2017. "Human factors in order picking: a content analysis of the literature," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 80630, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    25. Seyed Mohsen Mousavi & Ardeshir Bahreininejad & S. Nurmaya Musa & Farazila Yusof, 2017. "A modified particle swarm optimization for solving the integrated location and inventory control problems in a two-echelon supply chain network," Journal of Intelligent Manufacturing, Springer, vol. 28(1), pages 191-206, January.
    26. Matthews, Jason & Visagie, Stephan, 2013. "Order sequencing on a unidirectional cyclical picking line," European Journal of Operational Research, Elsevier, vol. 231(1), pages 79-87.
    27. Maria Albareda-Sambola & Antonio Alonso-Ayuso & Elisenda Molina & Clara Simón De Blas, 2009. "Variable Neighborhood Search For Order Batching In A Warehouse," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 26(05), pages 655-683.
    28. Roodbergen, Kees Jan & de Koster, Rene, 2001. "Routing order pickers in a warehouse with a middle aisle," European Journal of Operational Research, Elsevier, vol. 133(1), pages 32-43, August.
    29. Sebastian Henn & Sören Koch & Karl Doerner & Christine Strauss & Gerhard Wäscher, 2009. "Metaheuristics for the Order Batching Problem in Manual Order Picking Systems," FEMM Working Papers 09020, Otto-von-Guericke University Magdeburg, Faculty of Economics and Management.
    30. van Gils, Teun & Ramaekers, Katrien & Caris, An & de Koster, René B.M., 2018. "Designing efficient order picking systems by combining planning problems: State-of-the-art classification and review," European Journal of Operational Research, Elsevier, vol. 267(1), pages 1-15.
    31. A. Scholz & G. Wäscher, 2017. "Order Batching and Picker Routing in manual order picking systems: the benefits of integrated routing," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 25(2), pages 491-520, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Boysen, Nils & de Koster, René & Weidinger, Felix, 2019. "Warehousing in the e-commerce era: A survey," European Journal of Operational Research, Elsevier, vol. 277(2), pages 396-411.
    2. Giannikas, Vaggelis & Lu, Wenrong & Robertson, Brian & McFarlane, Duncan, 2017. "An interventionist strategy for warehouse order picking: Evidence from two case studies," International Journal of Production Economics, Elsevier, vol. 189(C), pages 63-76.
    3. Çağla Cergibozan & A. Serdar Tasan, 2019. "Order batching operations: an overview of classification, solution techniques, and future research," Journal of Intelligent Manufacturing, Springer, vol. 30(1), pages 335-349, January.
    4. Heiko Diefenbach & Simon Emde & Christoph H. Glock & Eric H. Grosse, 2022. "New solution procedures for the order picker routing problem in U-shaped pick areas with a movable depot," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(2), pages 535-573, June.
    5. van Gils, Teun & Ramaekers, Katrien & Caris, An & de Koster, René B.M., 2018. "Designing efficient order picking systems by combining planning problems: State-of-the-art classification and review," European Journal of Operational Research, Elsevier, vol. 267(1), pages 1-15.
    6. Pardo, Eduardo G. & Gil-Borrás, Sergio & Alonso-Ayuso, Antonio & Duarte, Abraham, 2024. "Order batching problems: Taxonomy and literature review," European Journal of Operational Research, Elsevier, vol. 313(1), pages 1-24.
    7. Ardjmand, Ehsan & Shakeri, Heman & Singh, Manjeet & Sanei Bajgiran, Omid, 2018. "Minimizing order picking makespan with multiple pickers in a wave picking warehouse," International Journal of Production Economics, Elsevier, vol. 206(C), pages 169-183.
    8. van Gils, Teun & Caris, An & Ramaekers, Katrien & Braekers, Kris, 2019. "Formulating and solving the integrated batching, routing, and picker scheduling problem in a real-life spare parts warehouse," European Journal of Operational Research, Elsevier, vol. 277(3), pages 814-830.
    9. Masae, Makusee & Glock, Christoph H. & Vichitkunakorn, Panupong, 2021. "A method for efficiently routing order pickers in the leaf warehouse," International Journal of Production Economics, Elsevier, vol. 234(C).
    10. Onal, Sevilay & Zhu, Wen & Das, Sanchoy, 2023. "Order picking heuristics for online order fulfillment warehouses with explosive storage," International Journal of Production Economics, Elsevier, vol. 256(C).
    11. Boysen, Nils & de Koster, René & Füßler, David, 2021. "The forgotten sons: Warehousing systems for brick-and-mortar retail chains," European Journal of Operational Research, Elsevier, vol. 288(2), pages 361-381.
    12. Sergio Gil-Borrás & Eduardo G. Pardo & Antonio Alonso-Ayuso & Abraham Duarte, 2020. "GRASP with Variable Neighborhood Descent for the online order batching problem," Journal of Global Optimization, Springer, vol. 78(2), pages 295-325, October.
    13. Silva, Allyson & Coelho, Leandro C. & Darvish, Maryam & Renaud, Jacques, 2020. "Integrating storage location and order picking problems in warehouse planning," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 140(C).
    14. Sandra Hahn & André Scholz, 2017. "Order Picking in Narrow-Aisle Warehouses: A Fast Approach to Minimize Waiting Times," FEMM Working Papers 170006, Otto-von-Guericke University Magdeburg, Faculty of Economics and Management.
    15. Fangyu Chen & Yongchang Wei & Hongwei Wang, 2018. "A heuristic based batching and assigning method for online customer orders," Flexible Services and Manufacturing Journal, Springer, vol. 30(4), pages 640-685, December.
    16. Çağla Cergibozan & A. Serdar Tasan, 2022. "Genetic algorithm based approaches to solve the order batching problem and a case study in a distribution center," Journal of Intelligent Manufacturing, Springer, vol. 33(1), pages 137-149, January.
    17. Gerhard Wäscher & André Scholz, 2015. "A Solution Approach for the Joint Order Batching and Picker Routing Problem in a Two-Block Layout," FEMM Working Papers 150004, Otto-von-Guericke University Magdeburg, Faculty of Economics and Management.
    18. Glock, Christoph H. & Grosse, Eric H. & Abedinnia, Hamid & Emde, Simon, 2019. "An integrated model to improve ergonomic and economic performance in order picking by rotating pallets," European Journal of Operational Research, Elsevier, vol. 273(2), pages 516-534.
    19. Wagner, Stefan & Mönch, Lars, 2023. "A variable neighborhood search approach to solve the order batching problem with heterogeneous pick devices," European Journal of Operational Research, Elsevier, vol. 304(2), pages 461-475.
    20. André Scholz & Daniel Schubert & Gerhard Wäscher, 2016. "Order picking with multiple pickers and due dates – Simultaneous solution of order batching, batch assignment and sequencing, and picker routing problems," FEMM Working Papers 160005, Otto-von-Guericke University Magdeburg, Faculty of Economics and Management.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:31:y:2020:i:3:d:10.1007_s10845-019-01470-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.