IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v78y2020i2d10.1007_s10898-020-00910-2.html
   My bibliography  Save this article

GRASP with Variable Neighborhood Descent for the online order batching problem

Author

Listed:
  • Sergio Gil-Borrás

    (Universidad Politécnica de Madrid)

  • Eduardo G. Pardo

    (Universidad Rey Juan Carlos)

  • Antonio Alonso-Ayuso

    (Universidad Rey Juan Carlos)

  • Abraham Duarte

    (Universidad Rey Juan Carlos)

Abstract

The Online Order Batching Problem (OOBP) is a variant of the well-known Order Batching Problem (OBP). As in the OBP, the goal of this problem is to collect all the orders that arrive at a warehouse, following an order batching picking policy, while minimizing a particular objective function. Therefore, orders are grouped in batches, of a maximum predefined capacity, before being collected. Each batch is assigned to a single picker, who collects all the orders within the batch in a single route. Unlike the OBP, this variant presents the peculiarity that the orders considered in each instance are not fully available in the warehouse at the beginning of the day, but they can arrive at the system once the picking process has already begun. Then, batches have to be dynamically updated and, as a consequence, routes must too. In this paper, the maximum turnover time (maximum time that an order remains in the warehouse) and the maximum completion time (total collecting time of all orders received in the warehouse) are minimized. To that aim, we propose an algorithm based in the combination of a Greedy Randomized Adaptive Search Procedure and a Variable Neighborhood Descent. The best variant of our method has been tested over a large set of instances and it has been favorably compared with the best previous approach in the state of the art.

Suggested Citation

  • Sergio Gil-Borrás & Eduardo G. Pardo & Antonio Alonso-Ayuso & Abraham Duarte, 2020. "GRASP with Variable Neighborhood Descent for the online order batching problem," Journal of Global Optimization, Springer, vol. 78(2), pages 295-325, October.
  • Handle: RePEc:spr:jglopt:v:78:y:2020:i:2:d:10.1007_s10898-020-00910-2
    DOI: 10.1007/s10898-020-00910-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-020-00910-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-020-00910-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pan, C-H. & Liu, S-Y., 1995. "A comparative study of order batching algorithms," Omega, Elsevier, vol. 23(6), pages 691-700, December.
    2. Abraham Duarte & Juan Pantrigo & Eduardo Pardo & Nenad Mladenovic, 2015. "Multi-objective variable neighborhood search: an application to combinatorial optimization problems," Journal of Global Optimization, Springer, vol. 63(3), pages 515-536, November.
    3. Gu, Jinxiang & Goetschalckx, Marc & McGinnis, Leon F., 2010. "Research on warehouse design and performance evaluation: A comprehensive review," European Journal of Operational Research, Elsevier, vol. 203(3), pages 539-549, June.
    4. Zhang, Jun & Wang, Xuping & Huang, Kai, 2018. "On-line scheduling of order picking and delivery with multiple zones and limited vehicle capacity," Omega, Elsevier, vol. 79(C), pages 104-115.
    5. Hansen, Pierre & Mladenovic, Nenad, 2001. "Variable neighborhood search: Principles and applications," European Journal of Operational Research, Elsevier, vol. 130(3), pages 449-467, May.
    6. Henn, Sebastian & Wäscher, Gerhard, 2012. "Tabu search heuristics for the order batching problem in manual order picking systems," European Journal of Operational Research, Elsevier, vol. 222(3), pages 484-494.
    7. Fangyu Chen & Yongchang Wei & Hongwei Wang, 2018. "A heuristic based batching and assigning method for online customer orders," Flexible Services and Manufacturing Journal, Springer, vol. 30(4), pages 640-685, December.
    8. Žulj, Ivan & Kramer, Sergej & Schneider, Michael, 2018. "A hybrid of adaptive large neighborhood search and tabu search for the order-batching problem," European Journal of Operational Research, Elsevier, vol. 264(2), pages 653-664.
    9. Sebastian Henn & Gerhard Wäscher, 2010. "Tabu Search Heuristics for the Order Batching Problem in Manual Order Picking Systems," FEMM Working Papers 100007, Otto-von-Guericke University Magdeburg, Faculty of Economics and Management.
    10. Pierre Hansen & Nenad Mladenović & José Moreno Pérez, 2010. "Variable neighbourhood search: methods and applications," Annals of Operations Research, Springer, vol. 175(1), pages 367-407, March.
    11. Gibson, David R. & Sharp, Gunter P., 1992. "Order batching procedures," European Journal of Operational Research, Elsevier, vol. 58(1), pages 57-67, April.
    12. de Koster, Rene & Le-Duc, Tho & Roodbergen, Kees Jan, 2007. "Design and control of warehouse order picking: A literature review," European Journal of Operational Research, Elsevier, vol. 182(2), pages 481-501, October.
    13. Sören Koch & Gerhard Wäscher, 2016. "A grouping genetic algorithm for the Order Batching Problem in distribution warehouses," Journal of Business Economics, Springer, vol. 86(1), pages 131-153, January.
    14. H. Donald Ratliff & Arnon S. Rosenthal, 1983. "Order-Picking in a Rectangular Warehouse: A Solvable Case of the Traveling Salesman Problem," Operations Research, INFORMS, vol. 31(3), pages 507-521, June.
    15. Sebastian Henn & Sören Koch & Karl Doerner & Christine Strauss & Gerhard Wäscher, 2009. "Metaheuristics for the Order Batching Problem in Manual Order Picking Systems," FEMM Working Papers 09020, Otto-von-Guericke University Magdeburg, Faculty of Economics and Management.
    16. A. Scholz & G. Wäscher, 2017. "Order Batching and Picker Routing in manual order picking systems: the benefits of integrated routing," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 25(2), pages 491-520, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pardo, Eduardo G. & Gil-Borrás, Sergio & Alonso-Ayuso, Antonio & Duarte, Abraham, 2024. "Order batching problems: Taxonomy and literature review," European Journal of Operational Research, Elsevier, vol. 313(1), pages 1-24.
    2. Angelo Sifaleras & Nenad Mladenović & Panos M. Pardalos, 2020. "Preface to the special issue “ICVNS 2018”," Journal of Global Optimization, Springer, vol. 78(2), pages 239-240, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pardo, Eduardo G. & Gil-Borrás, Sergio & Alonso-Ayuso, Antonio & Duarte, Abraham, 2024. "Order batching problems: Taxonomy and literature review," European Journal of Operational Research, Elsevier, vol. 313(1), pages 1-24.
    2. Boysen, Nils & de Koster, René & Weidinger, Felix, 2019. "Warehousing in the e-commerce era: A survey," European Journal of Operational Research, Elsevier, vol. 277(2), pages 396-411.
    3. Anderson Rogério Faia Pinto & Marcelo Seido Nagano, 2020. "Genetic algorithms applied to integration and optimization of billing and picking processes," Journal of Intelligent Manufacturing, Springer, vol. 31(3), pages 641-659, March.
    4. A. Scholz & G. Wäscher, 2017. "Order Batching and Picker Routing in manual order picking systems: the benefits of integrated routing," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 25(2), pages 491-520, June.
    5. Çağla Cergibozan & A. Serdar Tasan, 2019. "Order batching operations: an overview of classification, solution techniques, and future research," Journal of Intelligent Manufacturing, Springer, vol. 30(1), pages 335-349, January.
    6. Gerhard Wäscher & André Scholz, 2015. "A Solution Approach for the Joint Order Batching and Picker Routing Problem in a Two-Block Layout," FEMM Working Papers 150004, Otto-von-Guericke University Magdeburg, Faculty of Economics and Management.
    7. Wagner, Stefan & Mönch, Lars, 2023. "A variable neighborhood search approach to solve the order batching problem with heterogeneous pick devices," European Journal of Operational Research, Elsevier, vol. 304(2), pages 461-475.
    8. AERTS, Babiche & CORNELISSENS, Trijntje & SÖRENSEN, Kenneth, 2020. "Solving the joint order batching and picker routing problem, as a clustered vehicle routing problem," Working Papers 2020003, University of Antwerp, Faculty of Business and Economics.
    9. Çağla Cergibozan & A. Serdar Tasan, 2022. "Genetic algorithm based approaches to solve the order batching problem and a case study in a distribution center," Journal of Intelligent Manufacturing, Springer, vol. 33(1), pages 137-149, January.
    10. Žulj, Ivan & Kramer, Sergej & Schneider, Michael, 2018. "A hybrid of adaptive large neighborhood search and tabu search for the order-batching problem," European Journal of Operational Research, Elsevier, vol. 264(2), pages 653-664.
    11. Sören Koch & Gerhard Wäscher, 2016. "A grouping genetic algorithm for the Order Batching Problem in distribution warehouses," Journal of Business Economics, Springer, vol. 86(1), pages 131-153, January.
    12. Sören Koch & Gerhard Wäscher, 2011. "A Grouping Genetic Algorithm for the Order Batching Problem in Distribution Warehouses," FEMM Working Papers 110026, Otto-von-Guericke University Magdeburg, Faculty of Economics and Management.
    13. Sandra Hahn & André Scholz, 2017. "Order Picking in Narrow-Aisle Warehouses: A Fast Approach to Minimize Waiting Times," FEMM Working Papers 170006, Otto-von-Guericke University Magdeburg, Faculty of Economics and Management.
    14. Yang, Peng & Zhao, Zhijie & Guo, Huijie, 2020. "Order batch picking optimization under different storage scenarios for e-commerce warehouses," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 136(C).
    15. Yu, M. & de Koster, M.B.M., 2007. "Performance Approximation and Design of Pick-and-Pass Order Picking Systems," ERIM Report Series Research in Management ERS-2007-082-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    16. Žulj, Ivan & Salewski, Hagen & Goeke, Dominik & Schneider, Michael, 2022. "Order batching and batch sequencing in an AMR-assisted picker-to-parts system," European Journal of Operational Research, Elsevier, vol. 298(1), pages 182-201.
    17. Ardjmand, Ehsan & Shakeri, Heman & Singh, Manjeet & Sanei Bajgiran, Omid, 2018. "Minimizing order picking makespan with multiple pickers in a wave picking warehouse," International Journal of Production Economics, Elsevier, vol. 206(C), pages 169-183.
    18. Laura Korbacher & Katrin Heßler & Stefan Irnich, 2023. "The Single Picker Routing Problem with Scattered Storage: Modeling and Evaluation of Routing and Storage Policies," Working Papers 2302, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    19. Masae, Makusee & Glock, Christoph H. & Vichitkunakorn, Panupong, 2021. "A method for efficiently routing order pickers in the leaf warehouse," International Journal of Production Economics, Elsevier, vol. 234(C).
    20. Arbex Valle, Cristiano & Beasley, John E, 2020. "Order batching using an approximation for the distance travelled by pickers," European Journal of Operational Research, Elsevier, vol. 284(2), pages 460-484.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:78:y:2020:i:2:d:10.1007_s10898-020-00910-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.