IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v222y2012i3p484-494.html
   My bibliography  Save this article

Tabu search heuristics for the order batching problem in manual order picking systems

Author

Listed:
  • Henn, Sebastian
  • Wäscher, Gerhard

Abstract

In a manual order picking system, order pickers walk or ride through a distribution warehouse in order to collect items requested by (internal or external) customers. In order to perform these operations efficiently, it is usually required that customer orders be combined into (more substantial) picking orders that are limited in size. The order batching problem considered in this paper deals with the question of how a given set of customer orders should be combined into picking orders such that the total length of all picker tours necessary for all of the requested items to be collected is minimized. For the solution of this problem the authors suggest two approaches based on the tabu search principle. The first is a (classic) tabu search (TS), and the second is the attribute-based hill climber (ABHC). In a series of extensive numerical experiments, these approaches are benchmarked against other solution methods put forward in the current literature. It is demonstrated that the proposed methods are superior to the existing methods and provide solutions which may allow distribution warehouses to operate more efficiently.

Suggested Citation

  • Henn, Sebastian & Wäscher, Gerhard, 2012. "Tabu search heuristics for the order batching problem in manual order picking systems," European Journal of Operational Research, Elsevier, vol. 222(3), pages 484-494.
  • Handle: RePEc:eee:ejores:v:222:y:2012:i:3:p:484-494
    DOI: 10.1016/j.ejor.2012.05.049
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221712004389
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2012.05.049?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Derigs, U. & Kaiser, R., 2007. "Applying the attribute based hill climber heuristic to the vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 177(2), pages 719-732, March.
    2. Gibson, David R. & Sharp, Gunter P., 1992. "Order batching procedures," European Journal of Operational Research, Elsevier, vol. 58(1), pages 57-67, April.
    3. Chen, Mu-Chen & Wu, Hsiao-Pin, 2005. "An association-based clustering approach to order batching considering customer demand patterns," Omega, Elsevier, vol. 33(4), pages 333-343, August.
    4. de Koster, Rene & Le-Duc, Tho & Roodbergen, Kees Jan, 2007. "Design and control of warehouse order picking: A literature review," European Journal of Operational Research, Elsevier, vol. 182(2), pages 481-501, October.
    5. U Derigs & K Reuter, 2009. "A simple and efficient tabu search heuristic for solving the open vehicle routing problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(12), pages 1658-1669, December.
    6. G. Clarke & J. W. Wright, 1964. "Scheduling of Vehicles from a Central Depot to a Number of Delivery Points," Operations Research, INFORMS, vol. 12(4), pages 568-581, August.
    7. Yu, Mengfei & de Koster, René B.M., 2009. "The impact of order batching and picking area zoning on order picking system performance," European Journal of Operational Research, Elsevier, vol. 198(2), pages 480-490, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sebastian Henn & Gerhard Wäscher, 2010. "Tabu Search Heuristics for the Order Batching Problem in Manual Order Picking Systems," FEMM Working Papers 100007, Otto-von-Guericke University Magdeburg, Faculty of Economics and Management.
    2. Çağla Cergibozan & A. Serdar Tasan, 2019. "Order batching operations: an overview of classification, solution techniques, and future research," Journal of Intelligent Manufacturing, Springer, vol. 30(1), pages 335-349, January.
    3. Sören Koch & Gerhard Wäscher, 2016. "A grouping genetic algorithm for the Order Batching Problem in distribution warehouses," Journal of Business Economics, Springer, vol. 86(1), pages 131-153, January.
    4. Fangyu Chen & Yongchang Wei & Hongwei Wang, 2018. "A heuristic based batching and assigning method for online customer orders," Flexible Services and Manufacturing Journal, Springer, vol. 30(4), pages 640-685, December.
    5. Pardo, Eduardo G. & Gil-Borrás, Sergio & Alonso-Ayuso, Antonio & Duarte, Abraham, 2024. "Order batching problems: Taxonomy and literature review," European Journal of Operational Research, Elsevier, vol. 313(1), pages 1-24.
    6. Zhang, Jun & Wang, Xuping & Huang, Kai, 2018. "On-line scheduling of order picking and delivery with multiple zones and limited vehicle capacity," Omega, Elsevier, vol. 79(C), pages 104-115.
    7. Sebastian Henn & Verena Schmid, 2011. "Metaheuristics for Order Batching and Sequencing in Manual Order Picking Systems," FEMM Working Papers 110011, Otto-von-Guericke University Magdeburg, Faculty of Economics and Management.
    8. A. Scholz & G. Wäscher, 2017. "Order Batching and Picker Routing in manual order picking systems: the benefits of integrated routing," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 25(2), pages 491-520, June.
    9. van Gils, Teun & Ramaekers, Katrien & Braekers, Kris & Depaire, Benoît & Caris, An, 2018. "Increasing order picking efficiency by integrating storage, batching, zone picking, and routing policy decisions," International Journal of Production Economics, Elsevier, vol. 197(C), pages 243-261.
    10. Pan, Jason Chao-Hsien & Shih, Po-Hsun & Wu, Ming-Hung, 2015. "Order batching in a pick-and-pass warehousing system with group genetic algorithm," Omega, Elsevier, vol. 57(PB), pages 238-248.
    11. AERTS, Babiche & CORNELISSENS, Trijntje & SÖRENSEN, Kenneth, 2020. "Solving the joint order batching and picker routing problem, as a clustered vehicle routing problem," Working Papers 2020003, University of Antwerp, Faculty of Business and Economics.
    12. de Koster, M.B.M. & Le-Duc, T. & Roodbergen, K.J., 2006. "Design and Control of Warehouse Order Picking: a literature review," ERIM Report Series Research in Management ERS-2006-005-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    13. Briant, Olivier & Cambazard, Hadrien & Cattaruzza, Diego & Catusse, Nicolas & Ladier, Anne-Laure & Ogier, Maxime, 2020. "An efficient and general approach for the joint order batching and picker routing problem," European Journal of Operational Research, Elsevier, vol. 285(2), pages 497-512.
    14. de Koster, Rene & Le-Duc, Tho & Roodbergen, Kees Jan, 2007. "Design and control of warehouse order picking: A literature review," European Journal of Operational Research, Elsevier, vol. 182(2), pages 481-501, October.
    15. Masae, Makusee & Glock, Christoph H. & Vichitkunakorn, Panupong, 2021. "A method for efficiently routing order pickers in the leaf warehouse," International Journal of Production Economics, Elsevier, vol. 234(C).
    16. Gerhard Wäscher & André Scholz, 2015. "A Solution Approach for the Joint Order Batching and Picker Routing Problem in a Two-Block Layout," FEMM Working Papers 150004, Otto-von-Guericke University Magdeburg, Faculty of Economics and Management.
    17. Sebastian Henn & Sören Koch & Karl Doerner & Christine Strauss & Gerhard Wäscher, 2009. "Metaheuristics for the Order Batching Problem in Manual Order Picking Systems," FEMM Working Papers 09020, Otto-von-Guericke University Magdeburg, Faculty of Economics and Management.
    18. Wagner, Stefan & Mönch, Lars, 2023. "A variable neighborhood search approach to solve the order batching problem with heterogeneous pick devices," European Journal of Operational Research, Elsevier, vol. 304(2), pages 461-475.
    19. van Gils, Teun & Ramaekers, Katrien & Caris, An & de Koster, René B.M., 2018. "Designing efficient order picking systems by combining planning problems: State-of-the-art classification and review," European Journal of Operational Research, Elsevier, vol. 267(1), pages 1-15.
    20. Anderson Rogério Faia Pinto & Marcelo Seido Nagano, 2020. "Genetic algorithms applied to integration and optimization of billing and picking processes," Journal of Intelligent Manufacturing, Springer, vol. 31(3), pages 641-659, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:222:y:2012:i:3:p:484-494. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.