IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v33y2022i1d10.1007_s10845-020-01653-3.html
   My bibliography  Save this article

Genetic algorithm based approaches to solve the order batching problem and a case study in a distribution center

Author

Listed:
  • Çağla Cergibozan

    (Dokuz Eylül University)

  • A. Serdar Tasan

    (Dokuz Eylül University)

Abstract

The order batching problem is a combinatorial optimization problem that arises in the warehouse order picking process. In the order batching problem, the aim is to find groups of orders and picking routes of these groups to minimize distance travelled by the order picker. This problem is encountered especially in manual order picking systems where the capacity of picking vehicle is limited. Solving the order batching problem becomes more important when the size of the problem (e.g. number of storage locations, number of aisles, number of customer orders, etc.) is large. The content of the batch and picking route affect the retrieval-time of the orders. Therefore, an effective batching and routing approach is essential in reducing the time needed to collect ordered items. The main objective of this study is to develop fast and effective metaheuristic approaches to solve the order batching problem. For this purpose, two genetic algorithm based metaheuristic approaches are proposed. The numerical test of the proposed algorithms is performed with generated data sets. The proposed methods are thought to be useful to solve real-life problems in different warehouse configurations. Accordingly, a real case study is conducted in the distribution center of a well-known retailer in Turkey. The case study includes the storage assignment process of incoming products. The results demonstrate that developed algorithms are practical and useful in real-life problems.

Suggested Citation

  • Çağla Cergibozan & A. Serdar Tasan, 2022. "Genetic algorithm based approaches to solve the order batching problem and a case study in a distribution center," Journal of Intelligent Manufacturing, Springer, vol. 33(1), pages 137-149, January.
  • Handle: RePEc:spr:joinma:v:33:y:2022:i:1:d:10.1007_s10845-020-01653-3
    DOI: 10.1007/s10845-020-01653-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-020-01653-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-020-01653-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Žulj, Ivan & Kramer, Sergej & Schneider, Michael, 2018. "A hybrid of adaptive large neighborhood search and tabu search for the order-batching problem," European Journal of Operational Research, Elsevier, vol. 264(2), pages 653-664.
    2. Sebastian Henn & Gerhard Wäscher, 2010. "Tabu Search Heuristics for the Order Batching Problem in Manual Order Picking Systems," FEMM Working Papers 100007, Otto-von-Guericke University Magdeburg, Faculty of Economics and Management.
    3. Chen, Tzu-Li & Cheng, Chen-Yang & Chen, Yin-Yann & Chan, Li-Kai, 2015. "An efficient hybrid algorithm for integrated order batching, sequencing and routing problem," International Journal of Production Economics, Elsevier, vol. 159(C), pages 158-167.
    4. Chen, Mu-Chen & Wu, Hsiao-Pin, 2005. "An association-based clustering approach to order batching considering customer demand patterns," Omega, Elsevier, vol. 33(4), pages 333-343, August.
    5. de Koster, Rene & Le-Duc, Tho & Roodbergen, Kees Jan, 2007. "Design and control of warehouse order picking: A literature review," European Journal of Operational Research, Elsevier, vol. 182(2), pages 481-501, October.
    6. Lixin Tang & Gongshu Wang & Jiyin Liu & Jingyi Liu, 2011. "A combination of Lagrangian relaxation and column generation for order batching in steelmaking and continuous‐casting production," Naval Research Logistics (NRL), John Wiley & Sons, vol. 58(4), pages 370-388, June.
    7. Dmitry Ivanov & Alexander Tsipoulanidis & Jörn Schönberger, 2017. "Global Supply Chain and Operations Management," Springer Texts in Business and Economics, Springer, number 978-3-319-24217-0, June.
    8. Nicolas, Lenoble & Yannick, Frein & Ramzi, Hammami, 2018. "Order batching in an automated warehouse with several vertical lift modules: Optimization and experiments with real data," European Journal of Operational Research, Elsevier, vol. 267(3), pages 958-976.
    9. İbrahim Muter & Temel Öncan, 2015. "An exact solution approach for the order batching problem," IISE Transactions, Taylor & Francis Journals, vol. 47(7), pages 728-738, July.
    10. Çağla Cergibozan & A. Serdar Tasan, 2019. "Order batching operations: an overview of classification, solution techniques, and future research," Journal of Intelligent Manufacturing, Springer, vol. 30(1), pages 335-349, January.
    11. Matusiak, Marek & de Koster, René & Saarinen, Jari, 2017. "Utilizing individual picker skills to improve order batching in a warehouse," European Journal of Operational Research, Elsevier, vol. 263(3), pages 888-899.
    12. van Gils, Teun & Caris, An & Ramaekers, Katrien & Braekers, Kris, 2019. "Formulating and solving the integrated batching, routing, and picker scheduling problem in a real-life spare parts warehouse," European Journal of Operational Research, Elsevier, vol. 277(3), pages 814-830.
    13. Sören Koch & Gerhard Wäscher, 2016. "A grouping genetic algorithm for the Order Batching Problem in distribution warehouses," Journal of Business Economics, Springer, vol. 86(1), pages 131-153, January.
    14. Günther Zäpfel & Roland Braune & Michael Bögl, 2010. "Metaheuristic Search Concepts," Springer Books, Springer, number 978-3-642-11343-7, December.
    15. Lenoble Nicolas & Frein Yannick & Hammami Ramzi, 2018. "Order batching in an automated warehouse with several vertical lift modules: Optimization and experiments with real data," Post-Print hal-01999890, HAL.
    16. A. Scholz & G. Wäscher, 2017. "Order Batching and Picker Routing in manual order picking systems: the benefits of integrated routing," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 25(2), pages 491-520, June.
    17. Jianbin Li & Rihuan Huang & James B. Dai, 2017. "Joint optimisation of order batching and picker routing in the online retailer’s warehouse in China," International Journal of Production Research, Taylor & Francis Journals, vol. 55(2), pages 447-461, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Antonio Maria Coruzzolo & Francesco Lolli & Elia Balugani & Elisa Magnani & Miguel Afonso Sellitto, 2023. "Order Picking Problem: A Model for the Joint Optimisation of Order Batching, Batch Assignment Sequencing, and Picking Routing," Logistics, MDPI, vol. 7(3), pages 1-18, September.
    2. Hongbin Wang & Yang Ding & Hanchuan Xu, 2024. "Particle swarm optimization service composition algorithm based on prior knowledge," Journal of Intelligent Manufacturing, Springer, vol. 35(1), pages 35-53, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pardo, Eduardo G. & Gil-Borrás, Sergio & Alonso-Ayuso, Antonio & Duarte, Abraham, 2024. "Order batching problems: Taxonomy and literature review," European Journal of Operational Research, Elsevier, vol. 313(1), pages 1-24.
    2. Boysen, Nils & de Koster, René & Weidinger, Felix, 2019. "Warehousing in the e-commerce era: A survey," European Journal of Operational Research, Elsevier, vol. 277(2), pages 396-411.
    3. Anderson Rogério Faia Pinto & Marcelo Seido Nagano, 2020. "Genetic algorithms applied to integration and optimization of billing and picking processes," Journal of Intelligent Manufacturing, Springer, vol. 31(3), pages 641-659, March.
    4. Shandong Mou, 2022. "Integrated Order Picking and Multi-Skilled Picker Scheduling in Omni-Channel Retail Stores," Mathematics, MDPI, vol. 10(9), pages 1-19, April.
    5. Wagner, Stefan & Mönch, Lars, 2023. "A variable neighborhood search approach to solve the order batching problem with heterogeneous pick devices," European Journal of Operational Research, Elsevier, vol. 304(2), pages 461-475.
    6. Yang, Peng & Zhao, Zhijie & Guo, Huijie, 2020. "Order batch picking optimization under different storage scenarios for e-commerce warehouses," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 136(C).
    7. Çağla Cergibozan & A. Serdar Tasan, 2019. "Order batching operations: an overview of classification, solution techniques, and future research," Journal of Intelligent Manufacturing, Springer, vol. 30(1), pages 335-349, January.
    8. Zhong, Shuya & Giannikas, Vaggelis & Merino, Jorge & McFarlane, Duncan & Cheng, Jun & Shao, Wei, 2022. "Evaluating the benefits of picking and packing planning integration in e-commerce warehouses," European Journal of Operational Research, Elsevier, vol. 301(1), pages 67-81.
    9. Sergio Gil-Borrás & Eduardo G. Pardo & Antonio Alonso-Ayuso & Abraham Duarte, 2020. "GRASP with Variable Neighborhood Descent for the online order batching problem," Journal of Global Optimization, Springer, vol. 78(2), pages 295-325, October.
    10. Xie, Lin & Li, Hanyi & Luttmann, Laurin, 2023. "Formulating and solving integrated order batching and routing in multi-depot AGV-assisted mixed-shelves warehouses," European Journal of Operational Research, Elsevier, vol. 307(2), pages 713-730.
    11. Ahmad Ebrahimi & Hyun-woo Jeon & Sang-yeop Jung, 2023. "Improving Energy Consumption and Order Tardiness in Picker-to-Part Warehouses with Electric Forklifts: A Comparison of Four Evolutionary Algorithms," Sustainability, MDPI, vol. 15(13), pages 1-28, July.
    12. Fangyu Chen & Yongchang Wei & Hongwei Wang, 2018. "A heuristic based batching and assigning method for online customer orders," Flexible Services and Manufacturing Journal, Springer, vol. 30(4), pages 640-685, December.
    13. Kaibo Liang & Li Zhou & Jianglong Yang & Huwei Liu & Yakun Li & Fengmei Jing & Man Shan & Jin Yang, 2023. "Research on a Dynamic Task Update Assignment Strategy Based on a “Parts to Picker” Picking System," Mathematics, MDPI, vol. 11(7), pages 1-29, March.
    14. Žulj, Ivan & Salewski, Hagen & Goeke, Dominik & Schneider, Michael, 2022. "Order batching and batch sequencing in an AMR-assisted picker-to-parts system," European Journal of Operational Research, Elsevier, vol. 298(1), pages 182-201.
    15. Ardjmand, Ehsan & Shakeri, Heman & Singh, Manjeet & Sanei Bajgiran, Omid, 2018. "Minimizing order picking makespan with multiple pickers in a wave picking warehouse," International Journal of Production Economics, Elsevier, vol. 206(C), pages 169-183.
    16. Masae, Makusee & Glock, Christoph H. & Vichitkunakorn, Panupong, 2021. "A method for efficiently routing order pickers in the leaf warehouse," International Journal of Production Economics, Elsevier, vol. 234(C).
    17. Srinivas, Sharan & Yu, Shitao, 2022. "Collaborative order picking with multiple pickers and robots: Integrated approach for order batching, sequencing and picker-robot routing," International Journal of Production Economics, Elsevier, vol. 254(C).
    18. van Gils, Teun & Ramaekers, Katrien & Caris, An & de Koster, René B.M., 2018. "Designing efficient order picking systems by combining planning problems: State-of-the-art classification and review," European Journal of Operational Research, Elsevier, vol. 267(1), pages 1-15.
    19. Kuhn, Heinrich & Schubert, Daniel & Holzapfel, Andreas, 2021. "Integrated order batching and vehicle routing operations in grocery retail – A General Adaptive Large Neighborhood Search algorithm," European Journal of Operational Research, Elsevier, vol. 294(3), pages 1003-1021.
    20. Antonio Maria Coruzzolo & Francesco Lolli & Elia Balugani & Elisa Magnani & Miguel Afonso Sellitto, 2023. "Order Picking Problem: A Model for the Joint Optimisation of Order Batching, Batch Assignment Sequencing, and Picking Routing," Logistics, MDPI, vol. 7(3), pages 1-18, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:33:y:2022:i:1:d:10.1007_s10845-020-01653-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.