IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v31y2020i1d10.1007_s10845-018-1434-7.html
   My bibliography  Save this article

Establishment of maintenance inspection intervals: an application of process mining techniques in manufacturing

Author

Listed:
  • Edson Ruschel

    (Pontifical Catholic University of Parana)

  • Eduardo Alves Portela Santos

    (Pontifical Catholic University of Parana)

  • Eduardo de Freitas Rocha Loures

    (Pontifical Catholic University of Parana)

Abstract

Reducing costs and increasing equipment availability (uptime) are among the main goals of industrial ventures. Well defined interval durations between maintenance inspections provide major support in achieving these targets. However, in order to establish the best interval length, process behavior, cycle times and related costs must be clearly known, and future estimates for these parameters must be established. This paper applies process mining techniques in developing a probabilistic model in Bayesian Networks integrated to predictive models. The probability of a given activity occurring in the probabilistic model output establishes the forecast boundaries for predictive models, responsible for estimating process cycle times. Availability (uptime) and cost functions are mathematically defined and an iterative process is performed in the length of intervals between maintenance inspections until the time and costs wasted are minimized and the best interval duration is found. The probabilistic model enables simulating changes in the event occurrence probability, allowing a number of different scenarios to be visualized and providing better support to managers in scheduling maintenance activities. The results show that production losses can be further reduced through optimally defined intervals between maintenance inspections.

Suggested Citation

  • Edson Ruschel & Eduardo Alves Portela Santos & Eduardo de Freitas Rocha Loures, 2020. "Establishment of maintenance inspection intervals: an application of process mining techniques in manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 31(1), pages 53-72, January.
  • Handle: RePEc:spr:joinma:v:31:y:2020:i:1:d:10.1007_s10845-018-1434-7
    DOI: 10.1007/s10845-018-1434-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-018-1434-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-018-1434-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xiao, Lei & Song, Sanling & Chen, Xiaohui & Coit, David W., 2016. "Joint optimization of production scheduling and machine group preventive maintenance," Reliability Engineering and System Safety, Elsevier, vol. 146(C), pages 68-78.
    2. Dehayem Nodem, F.I. & Kenné, J.P. & Gharbi, A., 2011. "Simultaneous control of production, repair/replacement and preventive maintenance of deteriorating manufacturing systems," International Journal of Production Economics, Elsevier, vol. 134(1), pages 271-282, November.
    3. Mostafa Khatami & Seyed Hessameddin Zegordi, 2017. "Coordinative production and maintenance scheduling problem with flexible maintenance time intervals," Journal of Intelligent Manufacturing, Springer, vol. 28(4), pages 857-867, April.
    4. Chareonsuk, Chaichan & Nagarur, Nagen & Tabucanon, Mario T., 1997. "A multicriteria approach to the selection of preventive maintenance intervals," International Journal of Production Economics, Elsevier, vol. 49(1), pages 55-64, March.
    5. Ferreira, Rodrigo J.P. & de Almeida, Adiel Teixeira & Cavalcante, Cristiano A.V., 2009. "A multi-criteria decision model to determine inspection intervals of condition monitoring based on delay time analysis," Reliability Engineering and System Safety, Elsevier, vol. 94(5), pages 905-912.
    6. Sayyideh Mehri Mousavi & Hesam Shams & Shahrzad Ahmadi, 2017. "Simultaneous optimization of repair and control-limit policy in condition-based maintenance," Journal of Intelligent Manufacturing, Springer, vol. 28(1), pages 245-254, January.
    7. Nordgård, D.E. & Sand, K., 2010. "Application of Bayesian networks for risk analysis of MV air insulated switch operation," Reliability Engineering and System Safety, Elsevier, vol. 95(12), pages 1358-1366.
    8. Wang, Ling & Chu, Jian & Wu, Jun, 2007. "Selection of optimum maintenance strategies based on a fuzzy analytic hierarchy process," International Journal of Production Economics, Elsevier, vol. 107(1), pages 151-163, May.
    9. Wu, Fan & Niknam, Seyed A. & Kobza, John E., 2015. "A cost effective degradation-based maintenance strategy under imperfect repair," Reliability Engineering and System Safety, Elsevier, vol. 144(C), pages 234-243.
    10. Le, Minh Duc & Tan, Cher Ming, 2013. "Optimal maintenance strategy of deteriorating system under imperfect maintenance and inspection using mixed inspectionscheduling," Reliability Engineering and System Safety, Elsevier, vol. 113(C), pages 21-29.
    11. Richard Barlow & Larry Hunter, 1960. "Optimum Preventive Maintenance Policies," Operations Research, INFORMS, vol. 8(1), pages 90-100, February.
    12. Alebrant Mendes, Angélica & Coit, David W. & Duarte Ribeiro, José Luis, 2014. "Establishment of the optimal time interval between periodic inspections for redundant systems," Reliability Engineering and System Safety, Elsevier, vol. 131(C), pages 148-165.
    13. Lam, Ji Ye Janet & Banjevic, Dragan, 2015. "A myopic policy for optimal inspection scheduling for condition based maintenance," Reliability Engineering and System Safety, Elsevier, vol. 144(C), pages 1-11.
    14. Medina-Oliva, G. & Weber, P. & Iung, B., 2013. "PRM-based patterns for knowledge formalisation of industrial systems to support maintenance strategies assessment," Reliability Engineering and System Safety, Elsevier, vol. 116(C), pages 38-56.
    15. Lin, Jing & Pulido, Julio & Asplund, Matthias, 2015. "Reliability analysis for preventive maintenance based on classical and Bayesian semi-parametric degradation approaches using locomotive wheel-sets as a case study," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 143-156.
    16. Ralph L. Keeney, 2002. "Common Mistakes in Making Value Trade-Offs," Operations Research, INFORMS, vol. 50(6), pages 935-945, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zerbino, Pierluigi & Stefanini, Alessandro & Aloini, Davide, 2021. "Process Science in Action: A Literature Review on Process Mining in Business Management," Technological Forecasting and Social Change, Elsevier, vol. 172(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. de Jonge, Bram & Scarf, Philip A., 2020. "A review on maintenance optimization," European Journal of Operational Research, Elsevier, vol. 285(3), pages 805-824.
    2. Alaswad, Suzan & Xiang, Yisha, 2017. "A review on condition-based maintenance optimization models for stochastically deteriorating system," Reliability Engineering and System Safety, Elsevier, vol. 157(C), pages 54-63.
    3. B. Kirubakaran & M. Ilangkumaran, 2016. "Selection of optimum maintenance strategy based on FAHP integrated with GRA–TOPSIS," Annals of Operations Research, Springer, vol. 245(1), pages 285-313, October.
    4. Xiao, Lei & Zhang, Xinghui & Tang, Junxuan & Zhou, Yaqin, 2020. "Joint optimization of opportunistic maintenance and production scheduling considering batch production mode and varying operational conditions," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    5. Hajipour, Yassin & Taghipour, Sharareh, 2016. "Non-periodic inspection optimization of multi-component and k-out-of-m systems," Reliability Engineering and System Safety, Elsevier, vol. 156(C), pages 228-243.
    6. Faccio, M. & Persona, A. & Sgarbossa, F. & Zanin, G., 2014. "Industrial maintenance policy development: A quantitative framework," International Journal of Production Economics, Elsevier, vol. 147(PA), pages 85-93.
    7. Gössinger, Ralf & Helmke, Hanna & Kaluzny, Michael, 2017. "Condition-based release of maintenance jobs in a decentralised production-maintenance system – An analysis of alternative stochastic approaches," International Journal of Production Economics, Elsevier, vol. 193(C), pages 528-537.
    8. de Jonge, Bram & Teunter, Ruud & Tinga, Tiedo, 2017. "The influence of practical factors on the benefits of condition-based maintenance over time-based maintenance," Reliability Engineering and System Safety, Elsevier, vol. 158(C), pages 21-30.
    9. Truong-Ba, Huy & Cholette, Michael E. & Borghesani, Pietro & Ma, Lin & Kent, Geoff, 2021. "Condition-based inspection policies for boiler heat exchangers," European Journal of Operational Research, Elsevier, vol. 291(1), pages 232-243.
    10. Adiel T. de Almeida-Filho & Madson B. S. Monte & Danielle C. Morais, 2017. "A Voting Approach Applied to Preventive Maintenance Management of a Water Supply System," Group Decision and Negotiation, Springer, vol. 26(3), pages 523-546, May.
    11. Andrés Christen, J. & Ruggeri, Fabrizio & Villa, Enrique, 2011. "Utility based maintenance analysis using a Random Sign censoring model," Reliability Engineering and System Safety, Elsevier, vol. 96(3), pages 425-431.
    12. Ji Hwan Cha & Maxim Finkelstein, 2019. "Optimal preventive maintenance for systems having a continuous output and operating in a random environment," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(2), pages 327-350, July.
    13. Toledo, Maria Luíza Guerra de & Freitas, Marta A. & Colosimo, Enrico A. & Gilardoni, Gustavo L., 2015. "ARA and ARI imperfect repair models: Estimation, goodness-of-fit and reliability prediction," Reliability Engineering and System Safety, Elsevier, vol. 140(C), pages 107-115.
    14. Hongming Zhou & Sufen Wang & Faqun Qi & Shun Gao, 2022. "Maintenance modeling and operation parameters optimization for complex production line under reliability constraints," Annals of Operations Research, Springer, vol. 311(1), pages 507-523, April.
    15. Zhou, Xiaojun & Shi, Kailong, 2019. "Capacity failure rate based opportunistic maintenance modeling for series-parallel multi-station manufacturing systems," Reliability Engineering and System Safety, Elsevier, vol. 181(C), pages 46-53.
    16. Huang, Yeu-Shiang & Gau, Wei-Yo & Ho, Jyh-Wen, 2015. "Cost analysis of two-dimensional warranty for products with periodic preventive maintenance," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 51-58.
    17. Peng, Rui & Liu, Bin & Zhai, Qingqing & Wang, Wenbin, 2019. "Optimal maintenance strategy for systems with two failure modes," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 624-632.
    18. Brenière, Léa & Doyen, Laurent & Bérenguer, Christophe, 2023. "Optimization of preventive replacements dates and covariate inspections for repairable systems in varying environments," European Journal of Operational Research, Elsevier, vol. 308(3), pages 1126-1141.
    19. Park, J.H. & Chang, Woojin & Lie, C.H., 2012. "Stress-reducing preventive maintenance model for a unit under stressful environment," Reliability Engineering and System Safety, Elsevier, vol. 108(C), pages 42-48.
    20. Benyou Jia & Slobodan P. Simonovic & Pingan Zhong & Zhongbo Yu, 2016. "A Multi-Objective Best Compromise Decision Model for Real-Time Flood Mitigation Operations of Multi-Reservoir System," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(10), pages 3363-3387, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:31:y:2020:i:1:d:10.1007_s10845-018-1434-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.