IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v30y2019i8d10.1007_s10845-015-1171-0.html
   My bibliography  Save this article

Modelling and simulation of operation and maintenance strategy for offshore wind farms based on multi-agent system

Author

Listed:
  • M’hammed Sahnoun

    (CESI – IRISE Laboratory)

  • David Baudry

    (CESI – LUSINE Laboratory)

  • Navonil Mustafee

    (University of Exeter)

  • Anne Louis

    (CESI – IRISE Laboratory)

  • Philip Andi Smart

    (University of Exeter)

  • Phil Godsiff

    (University of Exeter)

  • Belahcene Mazari

    (CESI – IRISE Laboratory)

Abstract

Maintenance of offshore wind turbines is a complex and costly undertaking which acts as a barrier to the development of this source of energy. Factors such as the size of the turbines, the size of the wind farms, their distance from the coast and meteorological conditions make it difficult for the stakeholders to select the optimal maintenance strategy. With the objective of reducing costs and duration of such operations it is important that new maintenance techniques are investigated. In this paper we propose a hybrid model of maintenance that is based on multi-agent systems; this allows for the modelling of systems with dynamic interactions between multiple parts. A multi-criteria decision algorithm has been developed to allow analysis and selection of different maintenance strategies. A cost model that includes maintenance action cost, energy loss and installation of monitoring system cost has been presented. For the purposes of this research we have developed a simulator using NetLogo software and have provided experimental results. The results show that employing the proposed hybrid maintenance strategy could increase wind farm productivity and reduce maintenance cost.

Suggested Citation

  • M’hammed Sahnoun & David Baudry & Navonil Mustafee & Anne Louis & Philip Andi Smart & Phil Godsiff & Belahcene Mazari, 2019. "Modelling and simulation of operation and maintenance strategy for offshore wind farms based on multi-agent system," Journal of Intelligent Manufacturing, Springer, vol. 30(8), pages 2981-2997, December.
  • Handle: RePEc:spr:joinma:v:30:y:2019:i:8:d:10.1007_s10845-015-1171-0
    DOI: 10.1007/s10845-015-1171-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-015-1171-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-015-1171-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. R Karki & J Patel, 2009. "Reliability assessment of a wind power delivery system," Journal of Risk and Reliability, , vol. 223(1), pages 51-58, March.
    2. Jayantha P. Liyanage, 2008. "Integrated e-Operations-e-Maintenance: Applications in North Sea Offshore Assets," Springer Series in Reliability Engineering, in: Complex System Maintenance Handbook, chapter 24, pages 585-609, Springer.
    3. Perveen, Rehana & Kishor, Nand & Mohanty, Soumya R., 2014. "Off-shore wind farm development: Present status and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 780-792.
    4. Zhou, Wei & Yang, Hongxing & Fang, Zhaohong, 2006. "Wind power potential and characteristic analysis of the Pearl River Delta region, China," Renewable Energy, Elsevier, vol. 31(6), pages 739-753.
    5. Dalibor Petković & Siti Ab Hamid & Žarko Ćojbašić & Nenad Pavlović, 2014. "Adapting project management method and ANFIS strategy for variables selection and analyzing wind turbine wake effect," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(2), pages 463-475, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Saleh, Ali & Chiachío, Manuel & Salas, Juan Fernández & Kolios, Athanasios, 2023. "Self-adaptive optimized maintenance of offshore wind turbines by intelligent Petri nets," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    2. Phong B. Dao, 2021. "Learning Feedforward Control Using Multiagent Control Approach for Motion Control Systems," Energies, MDPI, vol. 14(2), pages 1-17, January.
    3. McMorland, Jade & Flannigan, Callum & Carroll, James & Collu, Maurizio & McMillan, David & Leithead, William & Coraddu, Andrea, 2022. "A review of operations and maintenance modelling with considerations for novel wind turbine concepts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    4. Diego Francisco Larios & Enrique Personal & Antonio Parejo & Sebastián García & Antonio García & Carlos Leon, 2020. "Operational Simulation Environment for SCADA Integration of Renewable Resources," Energies, MDPI, vol. 13(6), pages 1-37, March.
    5. Ren, Zhengru & Verma, Amrit Shankar & Li, Ye & Teuwen, Julie J.E. & Jiang, Zhiyu, 2021. "Offshore wind turbine operations and maintenance: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    6. Niemi, Arto & Skobiej, Bartosz & Kulev, Nikolai & Sill Torres, Frank, 2024. "Modeling offshore wind farm disturbances and maintenance service responses within the scope of resilience," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    7. A. Khatab & C. Diallo & E.-H. Aghezzaf & U. Venkatadri, 2022. "Optimization of the integrated fleet-level imperfect selective maintenance and repairpersons assignment problem," Journal of Intelligent Manufacturing, Springer, vol. 33(3), pages 703-718, March.
    8. Hajej Zied & Rezg Nidhal & Kammoun Mohamed Ali & Bouzouba Maryem, 2024. "Improved maintenance strategy for the wind turbine system under operating and climatic conditions," Journal of Risk and Reliability, , vol. 238(2), pages 349-365, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Xinping & Foley, Aoife & Zhang, Zenghai & Wang, Kaimin & O'Driscoll, Kieran, 2020. "An assessment of wind energy potential in the Beibu Gulf considering the energy demands of the Beibu Gulf Economic Rim," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    2. de Araujo Lima, Laerte & Bezerra Filho, Celso Rosendo, 2010. "Wind energy assessment and wind farm simulation in Triunfo – Pernambuco, Brazil," Renewable Energy, Elsevier, vol. 35(12), pages 2705-2713.
    3. Ziyu Zhang & Peng Huang & Haocheng Sun, 2020. "A Novel Analytical Wake Model with a Cosine-Shaped Velocity Deficit," Energies, MDPI, vol. 13(13), pages 1-20, June.
    4. Yanfang Chen & Young Hoon Joo & Dongran Song, 2022. "Multi-Objective Optimisation for Large-Scale Offshore Wind Farm Based on Decoupled Groups Operation," Energies, MDPI, vol. 15(7), pages 1-24, March.
    5. Kong, Xiaobing & Ma, Lele & Wang, Ce & Guo, Shifan & Abdelbaky, Mohamed Abdelkarim & Liu, Xiangjie & Lee, Kwang Y., 2022. "Large-scale wind farm control using distributed economic model predictive scheme," Renewable Energy, Elsevier, vol. 181(C), pages 581-591.
    6. Fathabadi, Hassan, 2019. "Recovering waste vibration energy of an automobile using shock absorbers included magnet moving-coil mechanism and adding to overall efficiency using wind turbine," Energy, Elsevier, vol. 189(C).
    7. Jin, Jingliang & Wen, Qinglan & Cheng, Siqi & Qiu, Yaru & Zhang, Xianyue & Guo, Xiaojun, 2022. "Optimization of carbon emission reduction paths in the low-carbon power dispatching process," Renewable Energy, Elsevier, vol. 188(C), pages 425-436.
    8. Ren, Guorui & Wan, Jie & Liu, Jinfu & Yu, Daren, 2019. "Characterization of wind resource in China from a new perspective," Energy, Elsevier, vol. 167(C), pages 994-1010.
    9. Wang, Jianzhou & Huang, Xiaojia & Li, Qiwei & Ma, Xuejiao, 2018. "Comparison of seven methods for determining the optimal statistical distribution parameters: A case study of wind energy assessment in the large-scale wind farms of China," Energy, Elsevier, vol. 164(C), pages 432-448.
    10. Liuming Jing & Dae-Hee Son & Sang-Hee Kang & Soon-Ryul Nam, 2017. "Unsynchronized Phasor-Based Protection Method for Single Line-to-Ground Faults in an Ungrounded Offshore Wind Farm with Fully-Rated Converters-Based Wind Turbines," Energies, MDPI, vol. 10(4), pages 1-15, April.
    11. Satir, Mert & Murphy, Fionnuala & McDonnell, Kevin, 2018. "Feasibility study of an offshore wind farm in the Aegean Sea, Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2552-2562.
    12. Islam, M.R. & Saidur, R. & Rahim, N.A., 2011. "Assessment of wind energy potentiality at Kudat and Labuan, Malaysia using Weibull distribution function," Energy, Elsevier, vol. 36(2), pages 985-992.
    13. Nejra Beganovic & Jackson G. Njiri & Dirk Söffker, 2018. "Reduction of Structural Loads in Wind Turbines Based on an Adapted Control Strategy Concerning Online Fatigue Damage Evaluation Models," Energies, MDPI, vol. 11(12), pages 1-15, December.
    14. Shafiee, Mahmood, 2015. "Maintenance logistics organization for offshore wind energy: Current progress and future perspectives," Renewable Energy, Elsevier, vol. 77(C), pages 182-193.
    15. Haas, Christian & Kempa, Karol & Moslener, Ulf, 2023. "Dealing with deep uncertainty in the energy transition: What we can learn from the electricity and transportation sectors," Energy Policy, Elsevier, vol. 179(C).
    16. Chang, Tian-Pau & Ko, Hong-Hsi & Liu, Feng-Jiao & Chen, Pai-Hsun & Chang, Ying-Pin & Liang, Ying-Hsin & Jang, Horng-Yuan & Lin, Tsung-Chi & Chen, Yi-Hwa, 2012. "Fractal dimension of wind speed time series," Applied Energy, Elsevier, vol. 93(C), pages 742-749.
    17. Jijian Lian & Ou Cai & Xiaofeng Dong & Qi Jiang & Yue Zhao, 2019. "Health Monitoring and Safety Evaluation of the Offshore Wind Turbine Structure: A Review and Discussion of Future Development," Sustainability, MDPI, vol. 11(2), pages 1-29, January.
    18. Waewsak, Jompob & Landry, Mathieu & Gagnon, Yves, 2015. "Offshore wind power potential of the Gulf of Thailand," Renewable Energy, Elsevier, vol. 81(C), pages 609-626.
    19. Halkos, George E. & Tzeremes, Nickolaos G., 2014. "The effect of electricity consumption from renewable sources on countries׳ economic growth levels: Evidence from advanced, emerging and developing economies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 166-173.
    20. Liu, Feng-Jiao & Chen, Pai-Hsun & Kuo, Shyi-Shiun & Su, De-Chuan & Chang, Tian-Pau & Yu, Yu-Hua & Lin, Tsung-Chi, 2011. "Wind characterization analysis incorporating genetic algorithm: A case study in Taiwan Strait," Energy, Elsevier, vol. 36(5), pages 2611-2619.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:30:y:2019:i:8:d:10.1007_s10845-015-1171-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.