IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v74y2014i2p463-475.html
   My bibliography  Save this article

Adapting project management method and ANFIS strategy for variables selection and analyzing wind turbine wake effect

Author

Listed:
  • Dalibor Petković
  • Siti Ab Hamid
  • Žarko Ćojbašić
  • Nenad Pavlović

Abstract

We present a project management methodology designed for the selection of wind turbines wake effect most influential parameters, who need to run wind farm project for large energy conversion. Very frequently, the managers of these projects are not project management professionals, so they need guidance to have autonomy, using minimal time and documentation resources. Therefore, agile method is adapted to assist the project management. Wind energy poses challenges such as the reduction in the wind speed due to the wake effect by other turbines. If a turbine is within the area of turbulence caused by another turbine, or the area behind another turbine, the wind speed suffers a reduction and, therefore, there is a decrease in the production of electricity. In order to increase the efficiency of a wind farm, analyzing the parameters, which have influence on the wake effect, is one of the focal research areas. To maximize the power produced in a wind farm, it is important to determine and analyze the most influential factors on the wake effects or wake wind speeds since the effect has most influence on the produced power. This procedure is typically called variable selection, and it corresponds to finding a subset of the full set of recorded variables that exhibits good predictive abilities. In this study, architecture for modeling complex systems in function approximation and regression was used, based on using adaptive neuro-fuzzy inference system (ANFIS). Variable searching using the ANFIS network was performed to determine how the five parameters affect the wake wind speed. Our article answers the call for renewing the theoretical bases of wind farm project management in order to overcome the problems that stem from the application of methods based on decision-rationality norms, which bracket the complexity of action and interactions in projects. Copyright Springer Science+Business Media Dordrecht 2014

Suggested Citation

  • Dalibor Petković & Siti Ab Hamid & Žarko Ćojbašić & Nenad Pavlović, 2014. "Adapting project management method and ANFIS strategy for variables selection and analyzing wind turbine wake effect," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(2), pages 463-475, November.
  • Handle: RePEc:spr:nathaz:v:74:y:2014:i:2:p:463-475
    DOI: 10.1007/s11069-014-1189-1
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-014-1189-1
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-014-1189-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Emami, Alireza & Noghreh, Pirooz, 2010. "New approach on optimization in placement of wind turbines within wind farm by genetic algorithms," Renewable Energy, Elsevier, vol. 35(7), pages 1559-1564.
    2. Marmidis, Grigorios & Lazarou, Stavros & Pyrgioti, Eleftheria, 2008. "Optimal placement of wind turbines in a wind park using Monte Carlo simulation," Renewable Energy, Elsevier, vol. 33(7), pages 1455-1460.
    3. Mustakerov, Ivan & Borissova, Daniela, 2010. "Wind turbines type and number choice using combinatorial optimization," Renewable Energy, Elsevier, vol. 35(9), pages 1887-1894.
    4. Changshui, Zhang & Guangdong, Hou & Jun, Wang, 2011. "A fast algorithm based on the submodular property for optimization of wind turbine positioning," Renewable Energy, Elsevier, vol. 36(11), pages 2951-2958.
    5. Yin, Peng-Yeng & Wang, Tai-Yuan, 2012. "A GRASP-VNS algorithm for optimal wind-turbine placement in wind farms," Renewable Energy, Elsevier, vol. 48(C), pages 489-498.
    6. Saavedra-Moreno, B. & Salcedo-Sanz, S. & Paniagua-Tineo, A. & Prieto, L. & Portilla-Figueras, A., 2011. "Seeding evolutionary algorithms with heuristics for optimal wind turbines positioning in wind farms," Renewable Energy, Elsevier, vol. 36(11), pages 2838-2844.
    7. González, Javier Serrano & Gonzalez Rodriguez, Angel G. & Mora, José Castro & Santos, Jesús Riquelme & Payan, Manuel Burgos, 2010. "Optimization of wind farm turbines layout using an evolutive algorithm," Renewable Energy, Elsevier, vol. 35(8), pages 1671-1681.
    8. Grady, S.A. & Hussaini, M.Y. & Abdullah, M.M., 2005. "Placement of wind turbines using genetic algorithms," Renewable Energy, Elsevier, vol. 30(2), pages 259-270.
    9. Nagai, Baku M. & Ameku, Kazumasa & Roy, Jitendro Nath, 2009. "Performance of a 3Â kW wind turbine generator with variable pitch control system," Applied Energy, Elsevier, vol. 86(9), pages 1774-1782, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yadegaridehkordi, Elaheh & Hourmand, Mehdi & Nilashi, Mehrbakhsh & Shuib, Liyana & Ahani, Ali & Ibrahim, Othman, 2018. "Influence of big data adoption on manufacturing companies' performance: An integrated DEMATEL-ANFIS approach," Technological Forecasting and Social Change, Elsevier, vol. 137(C), pages 199-210.
    2. Sebestyén, Viktor, 2021. "Renewable and Sustainable Energy Reviews: Environmental impact networks of renewable energy power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    3. Kim, Dongwoo & Song, Kang Sub & Lim, Junyub & Kim, Yongchan, 2018. "Analysis of two-phase injection heat pump using artificial neural network considering APF and LCCP under various weather conditions," Energy, Elsevier, vol. 155(C), pages 117-127.
    4. Marugán, Alberto Pliego & Márquez, Fausto Pedro García & Perez, Jesus María Pinar & Ruiz-Hernández, Diego, 2018. "A survey of artificial neural network in wind energy systems," Applied Energy, Elsevier, vol. 228(C), pages 1822-1836.
    5. Ahuja, Anjali & Jain, Anamika & Jain, Madhu, 2022. "Transient analysis and ANFIS computing of unreliable single server queueing model with multiple stage service and functioning vacation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 192(C), pages 464-490.
    6. Asadi, Shahla & Nilashi, Mehrbakhsh & Iranmanesh, Mohammad & Hyun, Sunghyup Sean & Rezvani, Azadeh, 2022. "Effect of internet of things on manufacturing performance: A hybrid multi-criteria decision-making and neuro-fuzzy approach," Technovation, Elsevier, vol. 118(C).
    7. Fathabadi, Hassan, 2019. "Recovering waste vibration energy of an automobile using shock absorbers included magnet moving-coil mechanism and adding to overall efficiency using wind turbine," Energy, Elsevier, vol. 189(C).
    8. Neshat, Mehdi & Nezhad, Meysam Majidi & Abbasnejad, Ehsan & Mirjalili, Seyedali & Groppi, Daniele & Heydari, Azim & Tjernberg, Lina Bertling & Astiaso Garcia, Davide & Alexander, Bradley & Shi, Qinfen, 2021. "Wind turbine power output prediction using a new hybrid neuro-evolutionary method," Energy, Elsevier, vol. 229(C).
    9. Nazarimehr, Fahimeh & Sheikh, Javad & Ahmadi, Mohammad Mahdi & Pham, Viet–Thanh & Jafari, Sajad, 2018. "Fuzzy predictive controller for chaotic flows based on continuous signals," Chaos, Solitons & Fractals, Elsevier, vol. 106(C), pages 349-354.
    10. M’hammed Sahnoun & David Baudry & Navonil Mustafee & Anne Louis & Philip Andi Smart & Phil Godsiff & Belahcene Mazari, 2019. "Modelling and simulation of operation and maintenance strategy for offshore wind farms based on multi-agent system," Journal of Intelligent Manufacturing, Springer, vol. 30(8), pages 2981-2997, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Serrano González, Javier & Burgos Payán, Manuel & Santos, Jesús Manuel Riquelme & González-Longatt, Francisco, 2014. "A review and recent developments in the optimal wind-turbine micro-siting problem," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 133-144.
    2. Azlan, F. & Kurnia, J.C. & Tan, B.T. & Ismadi, M.-Z., 2021. "Review on optimisation methods of wind farm array under three classical wind condition problems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    3. Dalibor Petković & Siti Hafizah Ab Hamid & Žarko Ćojbašić & Nenad T. Pavlović, 2014. "RETRACTED ARTICLE: Adapting project management method and ANFIS strategy for variables selection and analyzing wind turbine wake effect," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(2), pages 463-475, November.
    4. Al-Shammari, Eiman Tamah & Shamshirband, Shahaboddin & Petković, Dalibor & Zalnezhad, Erfan & Yee, Por Lip & Taher, Ros Suraya & Ćojbašić, Žarko, 2016. "Comparative study of clustering methods for wake effect analysis in wind farm," Energy, Elsevier, vol. 95(C), pages 573-579.
    5. Khan, Salman A. & Rehman, Shafiqur, 2013. "Iterative non-deterministic algorithms in on-shore wind farm design: A brief survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 370-384.
    6. Gu, Huajie & Wang, Jun, 2013. "Irregular-shape wind farm micro-siting optimization," Energy, Elsevier, vol. 57(C), pages 535-544.
    7. Cuadra, L. & Ocampo-Estrella, I. & Alexandre, E. & Salcedo-Sanz, S., 2019. "A study on the impact of easements in the deployment of wind farms near airport facilities," Renewable Energy, Elsevier, vol. 135(C), pages 566-588.
    8. Yin, Peng-Yeng & Wu, Tsai-Hung & Hsu, Ping-Yi, 2017. "Simulation based risk management for multi-objective optimal wind turbine placement using MOEA/D," Energy, Elsevier, vol. 141(C), pages 579-597.
    9. DuPont, Bryony & Cagan, Jonathan & Moriarty, Patrick, 2016. "An advanced modeling system for optimization of wind farm layout and wind turbine sizing using a multi-level extended pattern search algorithm," Energy, Elsevier, vol. 106(C), pages 802-814.
    10. Saavedra-Moreno, B. & Salcedo-Sanz, S. & Paniagua-Tineo, A. & Prieto, L. & Portilla-Figueras, A., 2011. "Seeding evolutionary algorithms with heuristics for optimal wind turbines positioning in wind farms," Renewable Energy, Elsevier, vol. 36(11), pages 2838-2844.
    11. Kyoungboo Yang & Kyungho Cho, 2019. "Simulated Annealing Algorithm for Wind Farm Layout Optimization: A Benchmark Study," Energies, MDPI, vol. 12(23), pages 1-15, November.
    12. Dhoot, Aditya & Antonini, Enrico G.A. & Romero, David A. & Amon, Cristina H., 2021. "Optimizing wind farms layouts for maximum energy production using probabilistic inference: Benchmarking reveals superior computational efficiency and scalability," Energy, Elsevier, vol. 223(C).
    13. Guirguis, David & Romero, David A. & Amon, Cristina H., 2017. "Gradient-based multidisciplinary design of wind farms with continuous-variable formulations," Applied Energy, Elsevier, vol. 197(C), pages 279-291.
    14. Park, Jinkyoo & Law, Kincho H., 2015. "Layout optimization for maximizing wind farm power production using sequential convex programming," Applied Energy, Elsevier, vol. 151(C), pages 320-334.
    15. Biswas, Partha P. & Suganthan, P.N. & Amaratunga, Gehan A.J., 2018. "Decomposition based multi-objective evolutionary algorithm for windfarm layout optimization," Renewable Energy, Elsevier, vol. 115(C), pages 326-337.
    16. Feng, Ju & Shen, Wen Zhong, 2017. "Design optimization of offshore wind farms with multiple types of wind turbines," Applied Energy, Elsevier, vol. 205(C), pages 1283-1297.
    17. Nicolas Kirchner-Bossi & Fernando Porté-Agel, 2018. "Realistic Wind Farm Layout Optimization through Genetic Algorithms Using a Gaussian Wake Model," Energies, MDPI, vol. 11(12), pages 1-26, November.
    18. Gao, Xiaoxia & Yang, Hongxing & Lu, Lin, 2016. "Optimization of wind turbine layout position in a wind farm using a newly-developed two-dimensional wake model," Applied Energy, Elsevier, vol. 174(C), pages 192-200.
    19. Lam, H.F. & Peng, H.Y., 2017. "Development of a wake model for Darrieus-type straight-bladed vertical axis wind turbines and its application to micro-siting problems," Renewable Energy, Elsevier, vol. 114(PB), pages 830-842.
    20. Turner, S.D.O. & Romero, D.A. & Zhang, P.Y. & Amon, C.H. & Chan, T.C.Y., 2014. "A new mathematical programming approach to optimize wind farm layouts," Renewable Energy, Elsevier, vol. 63(C), pages 674-680.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:74:y:2014:i:2:p:463-475. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.