IDEAS home Printed from https://ideas.repec.org/a/sae/risrel/v238y2024i2p349-365.html
   My bibliography  Save this article

Improved maintenance strategy for the wind turbine system under operating and climatic conditions

Author

Listed:
  • Hajej Zied
  • Rezg Nidhal
  • Kammoun Mohamed Ali
  • Bouzouba Maryem

Abstract

This paper studies and proposes a novel joint policy of production, imperfect and priority maintenance for a wind turbine system connected to battery storage and supply grid. The failure rate of wind farm is closely related to production rate and working time. The objective of this paper is to establish an economical energy production and imperfect maintenance plans minimizing the various costs incurred, taking into account the electricity demand variation, uncertainty of wind velocity, and the service level. The proposed maintenance strategy based on the priority and selective maintenance actions aims to choose the priority components for maintenance, while minimizing the total maintenance cost and ensuring a minimum reliability level for the wind turbine system. To achieve the latter goal, we formulate the reliability model of the wind turbine components by considering the influence of operating and environmental conditions. Numerical examples and sensitivity analyzes are presented to illustrate the significance and the effectiveness of the proposed methodology.

Suggested Citation

  • Hajej Zied & Rezg Nidhal & Kammoun Mohamed Ali & Bouzouba Maryem, 2024. "Improved maintenance strategy for the wind turbine system under operating and climatic conditions," Journal of Risk and Reliability, , vol. 238(2), pages 349-365, April.
  • Handle: RePEc:sae:risrel:v:238:y:2024:i:2:p:349-365
    DOI: 10.1177/1748006X221140445
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1748006X221140445
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1748006X221140445?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sathishkumar Nachimuthu & Ming J. Zuo & Yi Ding, 2019. "A Decision-making Model for Corrective Maintenance of Offshore Wind Turbines Considering Uncertainties," Energies, MDPI, vol. 12(8), pages 1-13, April.
    2. Michael Patriksson & Ann-Brith Strömberg & Adam Wojciechowski, 2015. "The stochastic opportunistic replacement problem, part I: models incorporating individual component lives," Annals of Operations Research, Springer, vol. 224(1), pages 25-50, January.
    3. Jinhe Wang & Xiaohong Zhang & Jianchao Zeng & Yunzheng Zhang, 2020. "Optimal dynamic imperfect preventive maintenance of wind turbines based on general renewal processes," International Journal of Production Research, Taylor & Francis Journals, vol. 58(22), pages 6791-6810, November.
    4. M’hammed Sahnoun & David Baudry & Navonil Mustafee & Anne Louis & Philip Andi Smart & Phil Godsiff & Belahcene Mazari, 2019. "Modelling and simulation of operation and maintenance strategy for offshore wind farms based on multi-agent system," Journal of Intelligent Manufacturing, Springer, vol. 30(8), pages 2981-2997, December.
    5. Michael Patriksson & Ann-Brith Strömberg & Adam Wojciechowski, 2015. "The stochastic opportunistic replacement problem, part II: a two-stage solution approach," Annals of Operations Research, Springer, vol. 224(1), pages 51-75, January.
    6. Zied Hajej & Rezg Nidhal & Chelbi Anis & Maryem Bouzoubaa, 2020. "An optimal integrated production and maintenance strategy for a multi-wind turbines system," International Journal of Production Research, Taylor & Francis Journals, vol. 58(21), pages 6417-6440, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nguyen, Thi-Anh-Tuyet & Chou, Shuo-Yan & Yu, Tiffany Hui-Kuang, 2022. "Developing an exhaustive optimal maintenance schedule for offshore wind turbines based on risk-assessment, technical factors and cost-effective evaluation," Energy, Elsevier, vol. 249(C).
    2. Efraim Laksman & Ann-Brith Strömberg & Michael Patriksson, 2020. "The stochastic opportunistic replacement problem, part III: improved bounding procedures," Annals of Operations Research, Springer, vol. 292(2), pages 711-733, September.
    3. Thomas Bittar & Pierre Carpentier & Jean-Philippe Chancelier & Jérôme Lonchampt, 2022. "A decomposition method by interaction prediction for the optimization of maintenance scheduling," Annals of Operations Research, Springer, vol. 316(1), pages 229-267, September.
    4. A.H.T. Shyam Kularathna & Sayaka Suda & Ken Takagi & Shigeru Tabeta, 2019. "Evaluation of Co-Existence Options of Marine Renewable Energy Projects in Japan," Sustainability, MDPI, vol. 11(10), pages 1-26, May.
    5. Ágota Bányai, 2021. "Energy Consumption-Based Maintenance Policy Optimization," Energies, MDPI, vol. 14(18), pages 1-33, September.
    6. Phong B. Dao, 2021. "Learning Feedforward Control Using Multiagent Control Approach for Motion Control Systems," Energies, MDPI, vol. 14(2), pages 1-17, January.
    7. Wang, Weikai & Chen, Xian, 2023. "Piecewise deterministic Markov process for condition-based imperfect maintenance models," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    8. Karar, Ahmed Noaman & Labib, Ashraf & Jones, Dylan, 2023. "Post-warranty maintenance strategy selection using shape packages process," International Journal of Production Economics, Elsevier, vol. 255(C).
    9. Levitin, Gregory & Xing, Liudong & Dai, Yanshun, 2022. "Minimum cost replacement and maintenance scheduling in dual-dissimilar-unit standby systems," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    10. Levitin, Gregory & Xing, Liudong & Xiang, Yanping, 2021. "Optimal multiple replacement and maintenance scheduling in two-unit systems," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    11. Song Jiu, 2021. "A two-phase approach for integrating preventive maintenance with production and delivery in an unreliable coal mine," Journal of Heuristics, Springer, vol. 27(6), pages 991-1020, December.
    12. Niemi, Arto & Skobiej, Bartosz & Kulev, Nikolai & Sill Torres, Frank, 2024. "Modeling offshore wind farm disturbances and maintenance service responses within the scope of resilience," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    13. Saleh, Ali & Chiachío, Manuel & Salas, Juan Fernández & Kolios, Athanasios, 2023. "Self-adaptive optimized maintenance of offshore wind turbines by intelligent Petri nets," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    14. José Ramón del Álamo Salgado & Mario J. Durán Martínez & Francisco J. Muñoz Gutiérrez & Jorge Alarcon, 2021. "Analysis of the Gearbox Oil Maintenance Procedures in Wind Energy II," Energies, MDPI, vol. 14(12), pages 1-18, June.
    15. Levitin, Gregory & Xing, Liudong & Dai, Yanshun, 2021. "Joint optimal mission aborting and replacement and maintenance scheduling in dual-unit standby systems," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    16. Ren, Zhengru & Verma, Amrit Shankar & Li, Ye & Teuwen, Julie J.E. & Jiang, Zhiyu, 2021. "Offshore wind turbine operations and maintenance: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    17. Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2021. "Influence of storage on mission success probability of m-out-of-n standby systems with reusable elements," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    18. Ahmed Raza & Vladimir Ulansky, 2019. "Optimal Preventive Maintenance of Wind Turbine Components with Imperfect Continuous Condition Monitoring," Energies, MDPI, vol. 12(19), pages 1-24, October.
    19. McMorland, Jade & Flannigan, Callum & Carroll, James & Collu, Maurizio & McMillan, David & Leithead, William & Coraddu, Andrea, 2022. "A review of operations and maintenance modelling with considerations for novel wind turbine concepts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    20. A. Khatab & C. Diallo & E.-H. Aghezzaf & U. Venkatadri, 2022. "Optimization of the integrated fleet-level imperfect selective maintenance and repairpersons assignment problem," Journal of Intelligent Manufacturing, Springer, vol. 33(3), pages 703-718, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:risrel:v:238:y:2024:i:2:p:349-365. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.