IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v30y2019i3d10.1007_s10845-017-1304-8.html
   My bibliography  Save this article

Automatic inspection of salt-and-pepper defects in OLED panels using image processing and control chart techniques

Author

Listed:
  • Jueun Kwak

    (Yonsei University)

  • Ki Bum Lee

    (Yonsei University)

  • Jaeyeon Jang

    (Yonsei University)

  • Kyong Soo Chang

    (Samsung Display Co., Ltd.)

  • Chang Ouk Kim

    (Yonsei University)

Abstract

In the manufacture of flat display panels, salt-and-pepper defects are caused by a malfunction in the chemical process. The defects are characterized by the dispersion of many black and white pixels in the display panels; these pixels are difficult to detect with conventional automatic fault detection methods that specialize in recognizing certain shapes, such as line or mura defects (stains). This study proposes a simple but high-performance salt-and-pepper defect detection method. First, the background image of the original image is generated using the mean filter in the spatial domain to create a noise image, which is the subtraction of the two images. A binary image is then obtained from the noise image to count the defective pixels, and a statistical control chart that monitors the number of defective pixels identifies the panel defects. Two experiments were conducted with images collected from an organic light-emitting diode inspection process, and the proposed method showed excellent performance with respect to classification accuracy and processing time.

Suggested Citation

  • Jueun Kwak & Ki Bum Lee & Jaeyeon Jang & Kyong Soo Chang & Chang Ouk Kim, 2019. "Automatic inspection of salt-and-pepper defects in OLED panels using image processing and control chart techniques," Journal of Intelligent Manufacturing, Springer, vol. 30(3), pages 1047-1055, March.
  • Handle: RePEc:spr:joinma:v:30:y:2019:i:3:d:10.1007_s10845-017-1304-8
    DOI: 10.1007/s10845-017-1304-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-017-1304-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-017-1304-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Te-Hsiu Sun & Fang-Cheng Tien & Fang-Chih Tien & Ren-Jieh Kuo, 2016. "Automated thermal fuse inspection using machine vision and artificial neural networks," Journal of Intelligent Manufacturing, Springer, vol. 27(3), pages 639-651, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aslı Çelik & Ayhan Küçükmanisa & Aydın Sümer & Aysun Taşyapı Çelebi & Oğuzhan Urhan, 2022. "A real-time defective pixel detection system for LCDs using deep learning based object detectors," Journal of Intelligent Manufacturing, Springer, vol. 33(4), pages 985-994, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xinyu Suo & Jian Liu & Licheng Dong & Chen Shengfeng & Lu Enhui & Chen Ning, 2022. "A machine vision-based defect detection system for nuclear-fuel rod groove," Journal of Intelligent Manufacturing, Springer, vol. 33(6), pages 1649-1663, August.
    2. Chi Ma & Hongquan Gui & Jialan Liu, 2023. "Self learning-empowered thermal error control method of precision machine tools based on digital twin," Journal of Intelligent Manufacturing, Springer, vol. 34(2), pages 695-717, February.
    3. Ohyung Kwon & Hyung Giun Kim & Min Ji Ham & Wonrae Kim & Gun-Hee Kim & Jae-Hyung Cho & Nam Il Kim & Kangil Kim, 2020. "A deep neural network for classification of melt-pool images in metal additive manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 31(2), pages 375-386, February.
    4. Mohamed Ben Gharsallah & Ezzedine Ben Braiek, 2021. "Computer aided manufacturing method for surface silicon steel inspection based on an efficient anisotropic diffusion algorithm," Journal of Intelligent Manufacturing, Springer, vol. 32(4), pages 1025-1041, April.
    5. Keyur D. Joshi & Vedang Chauhan & Brian Surgenor, 2020. "A flexible machine vision system for small part inspection based on a hybrid SVM/ANN approach," Journal of Intelligent Manufacturing, Springer, vol. 31(1), pages 103-125, January.
    6. Saksham Jain & Gautam Seth & Arpit Paruthi & Umang Soni & Girish Kumar, 2022. "Synthetic data augmentation for surface defect detection and classification using deep learning," Journal of Intelligent Manufacturing, Springer, vol. 33(4), pages 1007-1020, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:30:y:2019:i:3:d:10.1007_s10845-017-1304-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.