A real-time defective pixel detection system for LCDs using deep learning based object detectors
Author
Abstract
Suggested Citation
DOI: 10.1007/s10845-020-01704-9
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Myeongso Kim & Minyoung Lee & Minjeong An & Hongchul Lee, 2020. "Effective automatic defect classification process based on CNN with stacking ensemble model for TFT-LCD panel," Journal of Intelligent Manufacturing, Springer, vol. 31(5), pages 1165-1174, June.
- Jueun Kwak & Ki Bum Lee & Jaeyeon Jang & Kyong Soo Chang & Chang Ouk Kim, 2019. "Automatic inspection of salt-and-pepper defects in OLED panels using image processing and control chart techniques," Journal of Intelligent Manufacturing, Springer, vol. 30(3), pages 1047-1055, March.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Lin Huang & Weiming Deng & Chunchun Li & Tiejun Yang, 2024. "Object detection for blind inspection of industrial products based on neural architecture search," Journal of Intelligent Manufacturing, Springer, vol. 35(7), pages 3185-3195, October.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Meng Xiao & Bo Yang & Shilong Wang & Yongsheng Chang & Song Li & Gang Yi, 2023. "Research on recognition methods of spot-welding surface appearances based on transfer learning and a lightweight high-precision convolutional neural network," Journal of Intelligent Manufacturing, Springer, vol. 34(5), pages 2153-2170, June.
- Zhenyu Liu & Yiguo Song & Ruining Tang & Guifang Duan & Jianrong Tan, 2023. "Few-shot defect recognition of metal surfaces via attention-embedding and self-supervised learning," Journal of Intelligent Manufacturing, Springer, vol. 34(8), pages 3507-3521, December.
More about this item
Keywords
Pixel defect; Defect detection; LCD; Deep learning;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:33:y:2022:i:4:d:10.1007_s10845-020-01704-9. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.