IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i5p1884-d763603.html
   My bibliography  Save this article

Many-Objective Flexible Job Shop Scheduling Problem with Green Consideration

Author

Listed:
  • Yanwei Sang

    (State Laboratory of High Performance Complex Manufacturing, School of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China)

  • Jianping Tan

    (State Laboratory of High Performance Complex Manufacturing, School of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China)

Abstract

With the increasingly customized product requirements of customers, the manufactured products have the characteristics of multi-variety and small-batch production. A high-quality production scheduling scheme can reduce energy consumption, improve production capacity and processing quality of the enterprise. The high-dimensional many-objective green flexible job shop scheduling problem (Ma-OFJSSP) urgently needs to be solved. However, the existing optimization method are difficult to effectively optimize the Ma-OFJSSP. This study proposes a many-objective flexible job shop scheduling model. An optimization method SV-MA is designed to effectively optimize the Ma-OFJSSP model. The SV-MA memetic algorithm combines an improved strength Pareto evolution method (SPEA2) and the variable neighborhood search method. To effectively distinguish the better solutions and increase the selection pressure of the non-dominated solutions, the fitness calculation method based on the shift-based density estimation strategy is adopted. The SV-MA algorithm designs the variable neighborhood strategy which combines with scheduling knowledge. Finally, in the workshop scheduling benchmarks and the machining workshop engineering case, the feasibility and effectiveness of the proposed model and SV-MA algorithm are verified by comparison with other methods. The production scheduling scheme obtained by the proposed model and SV-MA optimization algorithm can improve production efficiency and reduce energy consumption in the production process.

Suggested Citation

  • Yanwei Sang & Jianping Tan, 2022. "Many-Objective Flexible Job Shop Scheduling Problem with Green Consideration," Energies, MDPI, vol. 15(5), pages 1-17, March.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:5:p:1884-:d:763603
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/5/1884/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/5/1884/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Vandana & S. R. Singh & Dharmendra Yadav & Biswajit Sarkar & Mitali Sarkar, 2021. "Impact of Energy and Carbon Emission of a Supply Chain Management with Two-Level Trade-Credit Policy," Energies, MDPI, vol. 14(6), pages 1-19, March.
    2. Xiuli Wu & Junjian Peng & Xiao Xiao & Shaomin Wu, 2021. "An effective approach for the dual-resource flexible job shop scheduling problem considering loading and unloading," Journal of Intelligent Manufacturing, Springer, vol. 32(3), pages 707-728, March.
    3. Choo Jun Tan & Siew Chin Neoh & Chee Peng Lim & Samer Hanoun & Wai Peng Wong & Chu Kong Loo & Li Zhang & Saeid Nahavandi, 2019. "Application of an evolutionary algorithm-based ensemble model to job-shop scheduling," Journal of Intelligent Manufacturing, Springer, vol. 30(2), pages 879-890, February.
    4. Xiaoguang He & Cai Dai & Zehua Chen, 2014. "Many-Objective Optimization Using Adaptive Differential Evolution with a New Ranking Method," Mathematical Problems in Engineering, Hindawi, vol. 2014, pages 1-8, August.
    5. Egon Balas, 1969. "Machine Sequencing Via Disjunctive Graphs: An Implicit Enumeration Algorithm," Operations Research, INFORMS, vol. 17(6), pages 941-957, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eid Gul & Giorgio Baldinelli & Pietro Bartocci, 2022. "Energy Transition: Renewable Energy-Based Combined Heat and Power Optimization Model for Distributed Communities," Energies, MDPI, vol. 15(18), pages 1-18, September.
    2. Andrea D'Ariano & Francesco Corman & Dario Pacciarelli & Marco Pranzo, 2008. "Reordering and Local Rerouting Strategies to Manage Train Traffic in Real Time," Transportation Science, INFORMS, vol. 42(4), pages 405-419, November.
    3. Konstantinos S. Boulas & Georgios D. Dounias & Chrissoleon T. Papadopoulos, 2023. "A hybrid evolutionary algorithm approach for estimating the throughput of short reliable approximately balanced production lines," Journal of Intelligent Manufacturing, Springer, vol. 34(2), pages 823-852, February.
    4. Steinhofel, K. & Albrecht, A. & Wong, C. K., 1999. "Two simulated annealing-based heuristics for the job shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 118(3), pages 524-548, November.
    5. Wenkang Zhang & Yufan Zheng & Rafiq Ahmad, 2023. "The integrated process planning and scheduling of flexible job-shop-type remanufacturing systems using improved artificial bee colony algorithm," Journal of Intelligent Manufacturing, Springer, vol. 34(7), pages 2963-2988, October.
    6. Selcuk Goren & Ihsan Sabuncuoglu & Utku Koc, 2012. "Optimization of schedule stability and efficiency under processing time variability and random machine breakdowns in a job shop environment," Naval Research Logistics (NRL), John Wiley & Sons, vol. 59(1), pages 26-38, February.
    7. Pierre Hansen & Julio Kuplinsky & Dominique Werra, 1997. "Mixed graph colorings," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 45(1), pages 145-160, February.
    8. Rego, César & Duarte, Renato, 2009. "A filter-and-fan approach to the job shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 194(3), pages 650-662, May.
    9. Bürgy, Reinhard & Bülbül, Kerem, 2018. "The job shop scheduling problem with convex costs," European Journal of Operational Research, Elsevier, vol. 268(1), pages 82-100.
    10. Wei Xiong & Dongmei Fu, 2018. "A new immune multi-agent system for the flexible job shop scheduling problem," Journal of Intelligent Manufacturing, Springer, vol. 29(4), pages 857-873, April.
    11. Zoghby, Jeriad & Wesley Barnes, J. & Hasenbein, John J., 2005. "Modeling the reentrant job shop scheduling problem with setups for metaheuristic searches," European Journal of Operational Research, Elsevier, vol. 167(2), pages 336-348, December.
    12. Valls, Vicente & Angeles Perez, M. & Sacramento Quintanilla, M., 1998. "A tabu search approach to machine scheduling," European Journal of Operational Research, Elsevier, vol. 106(2-3), pages 277-300, April.
    13. Tanveen Kaur Bhatia & Amit Kumar & Srimantoorao S. Appadoo & Yuvraj Gajpal & Mahesh Kumar Sharma, 2021. "Mehar Approach for Finding Shortest Path in Supply Chain Network," Sustainability, MDPI, vol. 13(7), pages 1-14, April.
    14. Carlo Mannino & Alessandro Mascis, 2009. "Optimal Real-Time Traffic Control in Metro Stations," Operations Research, INFORMS, vol. 57(4), pages 1026-1039, August.
    15. Guinet, Alain & Legrand, Marie, 1998. "Reduction of job-shop problems to flow-shop problems with precedence constraints," European Journal of Operational Research, Elsevier, vol. 109(1), pages 96-110, August.
    16. Leutwiler, Florin & Corman, Francesco, 2022. "A logic-based Benders decomposition for microscopic railway timetable planning," European Journal of Operational Research, Elsevier, vol. 303(2), pages 525-540.
    17. Lenin Nagarajan & Siva Kumar Mahalingam & Jayakrishna Kandasamy & Selvakumar Gurusamy, 2022. "A novel approach in selective assembly with an arbitrary distribution to minimize clearance variation using evolutionary algorithms: a comparative study," Journal of Intelligent Manufacturing, Springer, vol. 33(5), pages 1337-1354, June.
    18. Mrudul Y. Jani & Heta A. Patel & Amrita Bhadoriya & Urmila Chaudhari & Mohamed Abbas & Malak S. Alqahtani, 2023. "Deterioration Control Decision Support System for the Retailer during Availability of Trade Credit and Shortages," Mathematics, MDPI, vol. 11(3), pages 1-27, January.
    19. Elena Drobot & Ivan Makarov & Yelena Petrenko & Gaukhar Koshebayeva, 2022. "Relationship between Countries’ Energy Indicators and the Indices of GVC Participation: The Case of APEC Member Economies," Energies, MDPI, vol. 15(5), pages 1-22, February.
    20. Michael Pinedo & Marcos Singer, 1999. "A shifting bottleneck heuristic for minimizing the total weighted tardiness in a job shop," Naval Research Logistics (NRL), John Wiley & Sons, vol. 46(1), pages 1-17, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:5:p:1884-:d:763603. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.