IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v243y2015i2p514-522.html
   My bibliography  Save this article

Scheduling identical parallel machines with fixed delivery dates to minimize total tardiness

Author

Listed:
  • Mensendiek, Arne
  • Gupta, Jatinder N.D.
  • Herrmann, Jan

Abstract

This paper addresses the problem of minimizing the total tardiness of a set of jobs to be scheduled on identical parallel machines where jobs can only be delivered at certain fixed delivery dates. Scheduling problems with fixed delivery dates are frequent in industry, for example when a manufacturer has to rely on the timetable of a logistics provider to ship its products to customers. We develop and empirically evaluate both optimal and heuristic solution procedures to solve the problem. As the problem is NP-hard, only relatively small instances can be optimally solved in reasonable computational time using either an efficient mathematical programming formulation or a branch-and-bound algorithm. Consequently, we develop a tabu search and a hybrid genetic algorithm to quickly find good approximate solutions for larger instances.

Suggested Citation

  • Mensendiek, Arne & Gupta, Jatinder N.D. & Herrmann, Jan, 2015. "Scheduling identical parallel machines with fixed delivery dates to minimize total tardiness," European Journal of Operational Research, Elsevier, vol. 243(2), pages 514-522.
  • Handle: RePEc:eee:ejores:v:243:y:2015:i:2:p:514-522
    DOI: 10.1016/j.ejor.2014.12.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221714009849
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2014.12.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Biskup, Dirk & Herrmann, Jan & Gupta, Jatinder N.D., 2008. "Scheduling identical parallel machines to minimize total tardiness," International Journal of Production Economics, Elsevier, vol. 115(1), pages 134-142, September.
    2. Yalaoui, Farouk & Chu, Chengbin, 2002. "Parallel machine scheduling to minimize total tardiness," International Journal of Production Economics, Elsevier, vol. 76(3), pages 265-279, April.
    3. Diaz, Juan A. & Fernandez, Elena, 2001. "A Tabu search heuristic for the generalized assignment problem," European Journal of Operational Research, Elsevier, vol. 132(1), pages 22-38, July.
    4. Schaller, Jeffrey, 2009. "Note on Shim and Kim's lower bounds for scheduling on identical parallel machines to minimize total tardiness," European Journal of Operational Research, Elsevier, vol. 197(1), pages 422-426, August.
    5. Kathryn E. Stecke & Xuying Zhao, 2007. "Production and Transportation Integration for a Make-to-Order Manufacturing Company with a Commit-to-Delivery Business Mode," Manufacturing & Service Operations Management, INFORMS, vol. 9(2), pages 206-224, September.
    6. Azizoglu, Meral & Kirca, Omer, 1998. "Tardiness minimization on parallel machines," International Journal of Production Economics, Elsevier, vol. 55(2), pages 163-168, July.
    7. Tanaka, Shunji & Araki, Mituhiko, 2008. "A branch-and-bound algorithm with Lagrangian relaxation to minimize total tardiness on identical parallel machines," International Journal of Production Economics, Elsevier, vol. 113(1), pages 446-458, May.
    8. Shim, Sang-Oh & Kim, Yeong-Dae, 2007. "Scheduling on parallel identical machines to minimize total tardiness," European Journal of Operational Research, Elsevier, vol. 177(1), pages 135-146, February.
    9. Vallada, Eva & Ruiz, Rubén, 2011. "A genetic algorithm for the unrelated parallel machine scheduling problem with sequence dependent setup times," European Journal of Operational Research, Elsevier, vol. 211(3), pages 612-622, June.
    10. Chen, Jeng-Fung & Wu, Tai-Hsi, 2006. "Total tardiness minimization on unrelated parallel machine scheduling with auxiliary equipment constraints," Omega, Elsevier, vol. 34(1), pages 81-89, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Herr, Oliver & Goel, Asvin, 2016. "Minimising total tardiness for a single machine scheduling problem with family setups and resource constraints," European Journal of Operational Research, Elsevier, vol. 248(1), pages 123-135.
    2. Chung-Ho Su & Jen-Ya Wang, 2022. "A Branch-and-Bound Algorithm for Minimizing the Total Tardiness of Multiple Developers," Mathematics, MDPI, vol. 10(7), pages 1-24, April.
    3. Sun, X.T. & Chung, S.H. & Chan, Felix T.S. & Wang, Zheng, 2018. "The impact of liner shipping unreliability on the production–distribution scheduling of a decentralized manufacturing system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 114(C), pages 242-269.
    4. Li, Feng & Xu, Shifu & Xu, Zhou, 2023. "New exact and approximation algorithms for integrated production and transportation scheduling with committed delivery due dates and order acceptance," European Journal of Operational Research, Elsevier, vol. 306(1), pages 127-140.
    5. Abdelhamid Boudjelida, 2019. "On the robustness of joint production and maintenance scheduling in presence of uncertainties," Journal of Intelligent Manufacturing, Springer, vol. 30(4), pages 1515-1530, April.
    6. Liang-Liang Fu & Mohamed Ali Aloulou & Christian Artigues, 2018. "Integrated production and outbound distribution scheduling problems with job release dates and deadlines," Journal of Scheduling, Springer, vol. 21(4), pages 443-460, August.
    7. Hua Gong & Lixin Tang & Joseph Y.T. Leung, 2016. "Parallel machine scheduling with batch deliveries to minimize total flow time and delivery cost," Naval Research Logistics (NRL), John Wiley & Sons, vol. 63(6), pages 492-502, September.
    8. Wu, Lingxiao & Wang, Shuaian, 2018. "Exact and heuristic methods to solve the parallel machine scheduling problem with multi-processor tasks," International Journal of Production Economics, Elsevier, vol. 201(C), pages 26-40.
    9. Mohamed Amine Abdeljaoued & Nour El Houda Saadani & Zied Bahroun, 2020. "Heuristic and metaheuristic approaches for parallel machine scheduling under resource constraints," Operational Research, Springer, vol. 20(4), pages 2109-2132, December.
    10. Bachtenkirch, David & Bock, Stefan, 2022. "Finding efficient make-to-order production and batch delivery schedules," European Journal of Operational Research, Elsevier, vol. 297(1), pages 133-152.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arthur Kramer & Anand Subramanian, 2019. "A unified heuristic and an annotated bibliography for a large class of earliness–tardiness scheduling problems," Journal of Scheduling, Springer, vol. 22(1), pages 21-57, February.
    2. Daniel Schubert & André Scholz & Gerhard Wäscher, 2017. "Integrated Order Picking and Vehicle Routing with Due Dates," FEMM Working Papers 170007, Otto-von-Guericke University Magdeburg, Faculty of Economics and Management.
    3. Daniel Schubert & André Scholz & Gerhard Wäscher, 2018. "Integrated order picking and vehicle routing with due dates," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 40(4), pages 1109-1139, October.
    4. Söhnke Maecker & Liji Shen, 2020. "Solving parallel machine problems with delivery times and tardiness objectives," Annals of Operations Research, Springer, vol. 285(1), pages 315-334, February.
    5. Halil Şen & Kerem Bülbül, 2015. "A Strong Preemptive Relaxation for Weighted Tardiness and Earliness/Tardiness Problems on Unrelated Parallel Machines," INFORMS Journal on Computing, INFORMS, vol. 27(1), pages 135-150, February.
    6. Biskup, Dirk & Herrmann, Jan & Gupta, Jatinder N.D., 2008. "Scheduling identical parallel machines to minimize total tardiness," International Journal of Production Economics, Elsevier, vol. 115(1), pages 134-142, September.
    7. Schaller, Jeffrey, 2009. "Note on Shim and Kim's lower bounds for scheduling on identical parallel machines to minimize total tardiness," European Journal of Operational Research, Elsevier, vol. 197(1), pages 422-426, August.
    8. Ullrich, Christian A., 2013. "Integrated machine scheduling and vehicle routing with time windows," European Journal of Operational Research, Elsevier, vol. 227(1), pages 152-165.
    9. Berghman, Lotte & Leus, Roel, 2015. "Practical solutions for a dock assignment problem with trailer transportation," European Journal of Operational Research, Elsevier, vol. 246(3), pages 787-799.
    10. Donghun Lee & Hyeongwon Kang & Dongjin Lee & Jeonwoo Lee & Kwanho Kim, 2023. "Deep Reinforcement Learning-Based Scheduler on Parallel Dedicated Machine Scheduling Problem towards Minimizing Total Tardiness," Sustainability, MDPI, vol. 15(4), pages 1-14, February.
    11. Tanaka, Shunji & Araki, Mituhiko, 2008. "A branch-and-bound algorithm with Lagrangian relaxation to minimize total tardiness on identical parallel machines," International Journal of Production Economics, Elsevier, vol. 113(1), pages 446-458, May.
    12. Teobaldo Bulhões & Ruslan Sadykov & Anand Subramanian & Eduardo Uchoa, 2020. "On the exact solution of a large class of parallel machine scheduling problems," Journal of Scheduling, Springer, vol. 23(4), pages 411-429, August.
    13. Herr, Oliver & Goel, Asvin, 2016. "Minimising total tardiness for a single machine scheduling problem with family setups and resource constraints," European Journal of Operational Research, Elsevier, vol. 248(1), pages 123-135.
    14. Absalom E Ezugwu & Olawale J Adeleke & Serestina Viriri, 2018. "Symbiotic organisms search algorithm for the unrelated parallel machines scheduling with sequence-dependent setup times," PLOS ONE, Public Library of Science, vol. 13(7), pages 1-23, July.
    15. Shim, Sang-Oh & Kim, Yeong-Dae, 2007. "Scheduling on parallel identical machines to minimize total tardiness," European Journal of Operational Research, Elsevier, vol. 177(1), pages 135-146, February.
    16. S-O Shim & Y-D Kim, 2007. "Minimizing total tardiness in an unrelated parallel-machine scheduling problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(3), pages 346-354, March.
    17. Mojtaba Afzalirad & Masoud Shafipour, 2018. "Design of an efficient genetic algorithm for resource-constrained unrelated parallel machine scheduling problem with machine eligibility restrictions," Journal of Intelligent Manufacturing, Springer, vol. 29(2), pages 423-437, February.
    18. Chen, Jeng-Fung & Wu, Tai-Hsi, 2006. "Total tardiness minimization on unrelated parallel machine scheduling with auxiliary equipment constraints," Omega, Elsevier, vol. 34(1), pages 81-89, January.
    19. Yalaoui, F. & Chu, C., 2006. "New exact method to solve the Pm/rj/[summation operator]Cj schedule problem," International Journal of Production Economics, Elsevier, vol. 100(1), pages 168-179, March.
    20. Dung-Ying Lin & Tzu-Yun Huang, 2021. "A Hybrid Metaheuristic for the Unrelated Parallel Machine Scheduling Problem," Mathematics, MDPI, vol. 9(7), pages 1-20, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:243:y:2015:i:2:p:514-522. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.