IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v29y2018i2d10.1007_s10845-015-1107-8.html
   My bibliography  Save this article

Machine prognostics based on sparse representation model

Author

Listed:
  • Likun Ren

    (Naval Aeronautical and Astronautical University)

  • Weimin Lv

    (Naval Aeronautical and Astronautical University)

  • Shiwei Jiang

    (Naval Aeronautical and Astronautical University)

Abstract

The prognostic technologies for machines refer to the estimation of machines’ remaining useful life using monitoring data from sensors. Different from traditional maintenance strategies, this maintenance strategy can reduce downtime, maintenance costs and critical risks. Given these advantages, an increasing number of prognostic models are introduced. Data driven methods such as neural networks and Bayesian approaches are used widely in machine prognostics. However, the sequential information and inherent relationships among historical data are rarely considered in these models. So, the estimations are usually not accurate enough. In our paper, we take a novel methodology to estimate the remaining useful life: first, we adopt sparse representation model to extract the inherent relationships of training samples and measure the similarities between testing samples and training samples, and then a weight is given to every training sample to note its similarity to the testing sample. When all testing samples are measured, a hierarchical Hough voting process utilizing the sequential information of monitoring data is carried out to evaluate the remaining useful life. The industry experiment has proven the effectiveness of our approach.

Suggested Citation

  • Likun Ren & Weimin Lv & Shiwei Jiang, 2018. "Machine prognostics based on sparse representation model," Journal of Intelligent Manufacturing, Springer, vol. 29(2), pages 277-285, February.
  • Handle: RePEc:spr:joinma:v:29:y:2018:i:2:d:10.1007_s10845-015-1107-8
    DOI: 10.1007/s10845-015-1107-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-015-1107-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-015-1107-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zio, Enrico & Di Maio, Francesco, 2010. "A data-driven fuzzy approach for predicting the remaining useful life in dynamic failure scenarios of a nuclear system," Reliability Engineering and System Safety, Elsevier, vol. 95(1), pages 49-57.
    2. Wang, X. & Rabiei, M. & Hurtado, J. & Modarres, M. & Hoffman, P., 2009. "A probabilistic-based airframe integrity management model," Reliability Engineering and System Safety, Elsevier, vol. 94(5), pages 932-941.
    3. Zio, Enrico & Peloni, Giovanni, 2011. "Particle filtering prognostic estimation of the remaining useful life of nonlinear components," Reliability Engineering and System Safety, Elsevier, vol. 96(3), pages 403-409.
    4. Si, Xiao-Sheng & Wang, Wenbin & Hu, Chang-Hua & Zhou, Dong-Hua, 2011. "Remaining useful life estimation - A review on the statistical data driven approaches," European Journal of Operational Research, Elsevier, vol. 213(1), pages 1-14, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Le Son, Khanh & Fouladirad, Mitra & Barros, Anne & Levrat, Eric & Iung, Benoît, 2013. "Remaining useful life estimation based on stochastic deterioration models: A comparative study," Reliability Engineering and System Safety, Elsevier, vol. 112(C), pages 165-175.
    2. Baraldi, Piero & Mangili, Francesca & Zio, Enrico, 2013. "Investigation of uncertainty treatment capability of model-based and data-driven prognostic methods using simulated data," Reliability Engineering and System Safety, Elsevier, vol. 112(C), pages 94-108.
    3. Faisal Khan & Omer F. Eker & Atif Khan & Wasim Orfali, 2018. "Adaptive Degradation Prognostic Reasoning by Particle Filter with a Neural Network Degradation Model for Turbofan Jet Engine," Data, MDPI, vol. 3(4), pages 1-21, November.
    4. An, Dawn & Choi, Joo-Ho & Kim, Nam Ho, 2013. "Prognostics 101: A tutorial for particle filter-based prognostics algorithm using Matlab," Reliability Engineering and System Safety, Elsevier, vol. 115(C), pages 161-169.
    5. Wang, Zhaoqiang & Hu, Changhua & Wang, Wenbin & Zhou, Zhijie & Si, Xiaosheng, 2014. "A case study of remaining storage life prediction using stochastic filtering with the influence of condition monitoring," Reliability Engineering and System Safety, Elsevier, vol. 132(C), pages 186-195.
    6. Hu, Yang & Baraldi, Piero & Di Maio, Francesco & Zio, Enrico, 2015. "A particle filtering and kernel smoothing-based approach for new design component prognostics," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 19-31.
    7. Zhang, Jian-Xun & Si, Xiao-Sheng & Du, Dang-Bo & Hu, Chang-Hua & Hu, Chen, 2020. "A novel iterative approach of lifetime estimation for standby systems with deteriorating spare parts," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    8. García Nieto, P.J. & García-Gonzalo, E. & Sánchez Lasheras, F. & de Cos Juez, F.J., 2015. "Hybrid PSO–SVM-based method for forecasting of the remaining useful life for aircraft engines and evaluation of its reliability," Reliability Engineering and System Safety, Elsevier, vol. 138(C), pages 219-231.
    9. Costa, Nahuel & Sánchez, Luciano, 2022. "Variational encoding approach for interpretable assessment of remaining useful life estimation," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    10. Hai-Kun Wang & Yan-Feng Li & Yu Liu & Yuan-Jian Yang & Hong-Zhong Huang, 2015. "Remaining useful life estimation under degradation and shock damage," Journal of Risk and Reliability, , vol. 229(3), pages 200-208, June.
    11. Zhiguo Zeng & Francesco Di Maio & Enrico Zio & Rui Kang, 2017. "A hierarchical decision-making framework for the assessment of the prediction capability of prognostic methods," Journal of Risk and Reliability, , vol. 231(1), pages 36-52, February.
    12. Xi, Zhimin & Jing, Rong & Wang, Pingfeng & Hu, Chao, 2014. "A copula-based sampling method for data-driven prognostics," Reliability Engineering and System Safety, Elsevier, vol. 132(C), pages 72-82.
    13. Son, Junbo & Zhou, Shiyu & Sankavaram, Chaitanya & Du, Xinyu & Zhang, Yilu, 2016. "Remaining useful life prediction based on noisy condition monitoring signals using constrained Kalman filter," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 38-50.
    14. Wang, Hai-Kun & Li, Yan-Feng & Huang, Hong-Zhong & Jin, Tongdan, 2017. "Near-extreme system condition and near-extreme remaining useful time for a group of products," Reliability Engineering and System Safety, Elsevier, vol. 162(C), pages 103-110.
    15. Michele Compare & Luca Bellani & Enrico Zio, 2017. "Availability Model of a PHM-Equipped Component," Post-Print hal-01652232, HAL.
    16. Paulino José García Nieto & Esperanza García-Gonzalo & Antonio Bernardo Sánchez & Marta Menéndez Fernández, 2016. "A New Predictive Model Based on the ABC Optimized Multivariate Adaptive Regression Splines Approach for Predicting the Remaining Useful Life in Aircraft Engines," Energies, MDPI, vol. 9(6), pages 1-19, May.
    17. An, Dawn & Kim, Nam H. & Choi, Joo-Ho, 2015. "Practical options for selecting data-driven or physics-based prognostics algorithms with reviews," Reliability Engineering and System Safety, Elsevier, vol. 133(C), pages 223-236.
    18. Abdenour Soualhi & Mourad Lamraoui & Bilal Elyousfi & Hubert Razik, 2022. "PHM SURVEY: Implementation of Prognostic Methods for Monitoring Industrial Systems," Energies, MDPI, vol. 15(19), pages 1-24, September.
    19. Khac Tuan Huynh & Anne Barros & Christophe Bérenguer, 2012. "Adaptive condition-based maintenance decision framework for deteriorating systems operating under variable environment and uncertain condition monitoring," Journal of Risk and Reliability, , vol. 226(6), pages 602-623, December.
    20. Al-Dahidi, Sameer & Di Maio, Francesco & Baraldi, Piero & Zio, Enrico, 2016. "Remaining useful life estimation in heterogeneous fleets working under variable operating conditions," Reliability Engineering and System Safety, Elsevier, vol. 156(C), pages 109-124.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:29:y:2018:i:2:d:10.1007_s10845-015-1107-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.