IDEAS home Printed from https://ideas.repec.org/a/spr/joheur/v28y2022i3d10.1007_s10732-022-09496-2.html
   My bibliography  Save this article

Weighted iterated local branching for mathematical programming problems with binary variables

Author

Listed:
  • Filipe Rodrigues

    (University of Lisbon)

  • Agostinho Agra

    (University of Aveiro)

  • Lars Magnus Hvattum

    (Molde University College)

  • Cristina Requejo

    (University of Aveiro)

Abstract

Local search algorithms are frequently used to handle complex optimization problems involving binary decision variables. One way of implementing a local search procedure is by using a mixed-integer programming solver to explore a neighborhood defined through a constraint that limits the number of binary variables whose values are allowed to change in a given iteration. Recognizing that not all variables are equally promising to change when searching for better neighboring solutions, we propose a weighted iterated local branching heuristic. This new procedure differs from similar existing methods since it considers groups of binary variables and associates with each group a limit on the number of variables that can change. The groups of variables are defined using weights that indicate the expected contribution of flipping the variables when trying to identify improving solutions in the current neighborhood. When the mixed-integer programming solver fails to identify an improving solution in a given iteration, the proposed heuristic may force the search into new regions of the search space by utilizing the group of variables that are least promising to flip. The weighted iterated local branching heuristic is tested on benchmark instances of the optimum satisfiability problem, and computational results show that the weighted method is superior to an alternative method without weights.

Suggested Citation

  • Filipe Rodrigues & Agostinho Agra & Lars Magnus Hvattum & Cristina Requejo, 2022. "Weighted iterated local branching for mathematical programming problems with binary variables," Journal of Heuristics, Springer, vol. 28(3), pages 329-350, June.
  • Handle: RePEc:spr:joheur:v:28:y:2022:i:3:d:10.1007_s10732-022-09496-2
    DOI: 10.1007/s10732-022-09496-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10732-022-09496-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10732-022-09496-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Samavati, Mehran & Essam, Daryl & Nehring, Micah & Sarker, Ruhul, 2017. "A local branching heuristic for the open pit mine production scheduling problem," European Journal of Operational Research, Elsevier, vol. 257(1), pages 261-271.
    2. Filipe Rodrigues & Agostinho Agra & Lars Magnus Hvattum & Cristina Requejo, 2021. "Weighted proximity search," Journal of Heuristics, Springer, vol. 27(3), pages 459-496, June.
    3. Edward Rothberg, 2007. "An Evolutionary Algorithm for Polishing Mixed Integer Programming Solutions," INFORMS Journal on Computing, INFORMS, vol. 19(4), pages 534-541, November.
    4. Walter Rei & Michel Gendreau & Patrick Soriano, 2010. "A Hybrid Monte Carlo Local Branching Algorithm for the Single Vehicle Routing Problem with Stochastic Demands," Transportation Science, INFORMS, vol. 44(1), pages 136-146, February.
    5. Ruslan Sadykov & François Vanderbeck & Artur Pessoa & Issam Tahiri & Eduardo Uchoa, 2019. "Primal Heuristics for Branch and Price: The Assets of Diving Methods," INFORMS Journal on Computing, INFORMS, vol. 31(2), pages 251-267, April.
    6. Florent Hernandez & Michel Gendreau & Ola Jabali & Walter Rei, 2019. "A local branching matheuristic for the multi-vehicle routing problem with stochastic demands," Journal of Heuristics, Springer, vol. 25(2), pages 215-245, April.
    7. Fatemeh Sarayloo & Teodor Gabriel Crainic & Walter Rei, 2021. "A reduced cost-based restriction and refinement matheuristic for stochastic network design problem," Journal of Heuristics, Springer, vol. 27(3), pages 325-351, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Goodson, Justin C. & Ohlmann, Jeffrey W. & Thomas, Barrett W., 2012. "Cyclic-order neighborhoods with application to the vehicle routing problem with stochastic demand," European Journal of Operational Research, Elsevier, vol. 217(2), pages 312-323.
    2. Park, Jongyoon & Han, Jinil & Lee, Kyungsik, 2024. "Integer optimization models and algorithms for the multi-period non-shareable resource allocation problem," European Journal of Operational Research, Elsevier, vol. 317(1), pages 43-59.
    3. Miriam Kießling & Sascha Kurz & Jörg Rambau, 2021. "An exact column-generation approach for the lot-type design problem," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(3), pages 741-780, October.
    4. Griset, Rodolphe & Bendotti, Pascale & Detienne, Boris & Porcheron, Marc & Şen, Halil & Vanderbeck, François, 2022. "Combining Dantzig-Wolfe and Benders decompositions to solve a large-scale nuclear outage planning problem," European Journal of Operational Research, Elsevier, vol. 298(3), pages 1067-1083.
    5. Rigo, Cezar Antônio & Seman, Laio Oriel & Camponogara, Eduardo & Morsch Filho, Edemar & Bezerra, Eduardo Augusto & Munari, Pedro, 2022. "A branch-and-price algorithm for nanosatellite task scheduling to improve mission quality-of-service," European Journal of Operational Research, Elsevier, vol. 303(1), pages 168-183.
    6. Changyou Xu & Gang Chen & Huabo Lu & Qiuxia Zhang & Zhengke Liu & Jing Bian, 2024. "Integrated Optimization of Production Scheduling and Haulage Route Planning in Open-Pit Mines," Mathematics, MDPI, vol. 12(13), pages 1-24, July.
    7. Liu, Chuanju & Lin, Shaochong & Shen, Zuo-Jun Max & Zhang, Junlong, 2023. "Stochastic service network design: The value of fixed routes," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 174(C).
    8. Filipe Rodrigues & Agostinho Agra & Lars Magnus Hvattum & Cristina Requejo, 2021. "Weighted proximity search," Journal of Heuristics, Springer, vol. 27(3), pages 459-496, June.
    9. Ricardo M. Lima & Ignacio E. Grossmann, 2017. "On the solution of nonconvex cardinality Boolean quadratic programming problems: a computational study," Computational Optimization and Applications, Springer, vol. 66(1), pages 1-37, January.
    10. Maxence Delorme & Manuel Iori, 2020. "Enhanced Pseudo-polynomial Formulations for Bin Packing and Cutting Stock Problems," INFORMS Journal on Computing, INFORMS, vol. 32(1), pages 101-119, January.
    11. Adil Tahir & Guy Desaulniers & Issmail El Hallaoui, 2022. "Integral Column Generation for Set Partitioning Problems with Side Constraints," INFORMS Journal on Computing, INFORMS, vol. 34(4), pages 2313-2331, July.
    12. Jiliu Li & Zhixing Luo & Roberto Baldacci & Hu Qin & Zhou Xu, 2023. "A New Exact Algorithm for Single-Commodity Vehicle Routing with Split Pickups and Deliveries," INFORMS Journal on Computing, INFORMS, vol. 35(1), pages 31-49, January.
    13. Prasanna Balaprakash & Mauro Birattari & Thomas Stützle & Marco Dorigo, 2015. "Estimation-based metaheuristics for the single vehicle routing problem with stochastic demands and customers," Computational Optimization and Applications, Springer, vol. 61(2), pages 463-487, June.
    14. Majid Salavati-Khoshghalb & Michel Gendreau & Ola Jabali & Walter Rei, 2019. "A hybrid recourse policy for the vehicle routing problem with stochastic demands," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 8(3), pages 269-298, September.
    15. Nancel-Penard, Pierre & Morales, Nelson & Cornillier, Fabien, 2022. "A recursive time aggregation-disaggregation heuristic for the multidimensional and multiperiod precedence-constrained knapsack problem: An application to the open-pit mine block sequencing problem," European Journal of Operational Research, Elsevier, vol. 303(3), pages 1088-1099.
    16. Jorge Oyola & Halvard Arntzen & David L. Woodruff, 2017. "The stochastic vehicle routing problem, a literature review, Part II: solution methods," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 6(4), pages 349-388, December.
    17. Salavati-Khoshghalb, Majid & Gendreau, Michel & Jabali, Ola & Rei, Walter, 2019. "An exact algorithm to solve the vehicle routing problem with stochastic demands under an optimal restocking policy," European Journal of Operational Research, Elsevier, vol. 273(1), pages 175-189.
    18. Babak Akbarzadeh & Ghasem Moslehi & Mohammad Reisi-Nafchi & Broos Maenhout, 2020. "A diving heuristic for planning and scheduling surgical cases in the operating room department with nurse re-rostering," Journal of Scheduling, Springer, vol. 23(2), pages 265-288, April.
    19. Martinovic, J. & Strasdat, N. & Valério de Carvalho, J. & Furini, F., 2023. "A combinatorial flow-based formulation for temporal bin packing problems," European Journal of Operational Research, Elsevier, vol. 307(2), pages 554-574.
    20. Adel Alfonso Mendoza Mendoza & Tomás José Fontalvo Herrera & Delimiro Alberto Visbal Cadavid, 2014. "Optimización multiobjetivo en una cadena de suministro," Revista Ciencias Estratégicas, Universidad Pontificia Bolivariana, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joheur:v:28:y:2022:i:3:d:10.1007_s10732-022-09496-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.