IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v298y2022i3p1067-1083.html
   My bibliography  Save this article

Combining Dantzig-Wolfe and Benders decompositions to solve a large-scale nuclear outage planning problem

Author

Listed:
  • Griset, Rodolphe
  • Bendotti, Pascale
  • Detienne, Boris
  • Porcheron, Marc
  • Şen, Halil
  • Vanderbeck, François

Abstract

Optimizing nuclear unit outages is of significant economic importance for the French electricity company EDF, as these outages induce a substitute production by other more expensive means to fulfill electricity demand. This problem is quite challenging given the specific operating constraints of nuclear units, the stochasticity of both the demand and non-nuclear units availability, and the scale of the instances. To tackle these difficulties we use a combined decomposition approach. The operating constraints of the nuclear units are built into a Dantzig-Wolfe pricing subproblem whose solutions define the columns of a demand covering formulation. The scenarios of demand and non-nuclear units availability are handled in a Benders decomposition. Our approach is shown to scale up to the real-life instances of the French nuclear fleet.

Suggested Citation

  • Griset, Rodolphe & Bendotti, Pascale & Detienne, Boris & Porcheron, Marc & Şen, Halil & Vanderbeck, François, 2022. "Combining Dantzig-Wolfe and Benders decompositions to solve a large-scale nuclear outage planning problem," European Journal of Operational Research, Elsevier, vol. 298(3), pages 1067-1083.
  • Handle: RePEc:eee:ejores:v:298:y:2022:i:3:p:1067-1083
    DOI: 10.1016/j.ejor.2021.07.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221721006135
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2021.07.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fourcade, Fabrice & Johnson, Ellis & Bara, Mourad & Cortey-Dumont, Philippe, 1997. "Optimizing nuclear power plant refueling with mixed-integer programming," European Journal of Operational Research, Elsevier, vol. 97(2), pages 269-280, March.
    2. A. Pessoa & R. Sadykov & E. Uchoa & F. Vanderbeck, 2018. "Automation and Combination of Linear-Programming Based Stabilization Techniques in Column Generation," INFORMS Journal on Computing, INFORMS, vol. 30(2), pages 339-360, May.
    3. Ruslan Sadykov & François Vanderbeck & Artur Pessoa & Issam Tahiri & Eduardo Uchoa, 2019. "Primal Heuristics for Branch and Price: The Assets of Diving Methods," INFORMS Journal on Computing, INFORMS, vol. 31(2), pages 251-267, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Orlando Rivera Letelier & François Clautiaux & Ruslan Sadykov, 2022. "Bin Packing Problem with Time Lags," INFORMS Journal on Computing, INFORMS, vol. 34(4), pages 2249-2270, July.
    2. Artur Pessoa & Ruslan Sadykov & Eduardo Uchoa, 2021. "Solving Bin Packing Problems Using VRPSolver Models," SN Operations Research Forum, Springer, vol. 2(2), pages 1-25, June.
    3. François Clautiaux & Ruslan Sadykov & François Vanderbeck & Quentin Viaud, 2019. "Pattern-based diving heuristics for a two-dimensional guillotine cutting-stock problem with leftovers," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 7(3), pages 265-297, September.
    4. Wu, Lingxiao & Wang, Shuaian & Laporte, Gilbert, 2021. "The Robust Bulk Ship Routing Problem with Batched Cargo Selection," Transportation Research Part B: Methodological, Elsevier, vol. 143(C), pages 124-159.
    5. Ayşe N. Arslan & Boris Detienne, 2022. "Decomposition-Based Approaches for a Class of Two-Stage Robust Binary Optimization Problems," INFORMS Journal on Computing, INFORMS, vol. 34(2), pages 857-871, March.
    6. Renaud Chicoisne, 2023. "Computational aspects of column generation for nonlinear and conic optimization: classical and linearized schemes," Computational Optimization and Applications, Springer, vol. 84(3), pages 789-831, April.
    7. Froger, Aurélien & Gendreau, Michel & Mendoza, Jorge E. & Pinson, Éric & Rousseau, Louis-Martin, 2016. "Maintenance scheduling in the electricity industry: A literature review," European Journal of Operational Research, Elsevier, vol. 251(3), pages 695-706.
    8. Maxence Delorme & Manuel Iori, 2020. "Enhanced Pseudo-polynomial Formulations for Bin Packing and Cutting Stock Problems," INFORMS Journal on Computing, INFORMS, vol. 32(1), pages 101-119, January.
    9. Jiliu Li & Zhixing Luo & Roberto Baldacci & Hu Qin & Zhou Xu, 2023. "A New Exact Algorithm for Single-Commodity Vehicle Routing with Split Pickups and Deliveries," INFORMS Journal on Computing, INFORMS, vol. 35(1), pages 31-49, January.
    10. Artur Alves Pessoa & Teobaldo Bulhões & Vitor Nesello & Anand Subramanian, 2022. "Exact Approaches for Single Machine Total Weighted Tardiness Batch Scheduling," INFORMS Journal on Computing, INFORMS, vol. 34(3), pages 1512-1530, May.
    11. Tonbari, Mohamed El & Ahmed, Shabbir, 2023. "Consensus-based Dantzig-Wolfe decomposition," European Journal of Operational Research, Elsevier, vol. 307(3), pages 1441-1456.
    12. Meersman, Tine & Maenhout, Broos & Van Herck, Koen, 2023. "A nested Benders decomposition-based algorithm to solve the three-stage stochastic optimisation problem modeling population-based breast cancer screening," European Journal of Operational Research, Elsevier, vol. 310(3), pages 1273-1293.
    13. Ruslan Sadykov & François Vanderbeck & Artur Pessoa & Issam Tahiri & Eduardo Uchoa, 2019. "Primal Heuristics for Branch and Price: The Assets of Diving Methods," INFORMS Journal on Computing, INFORMS, vol. 31(2), pages 251-267, April.
    14. Dennis J. Dunning & Steve Lockfort & Quentin E. Ross & Phillip C. Beccue & Jeffrey S. Stonebraker, 2001. "New York Power Authority Uses Decision Analysis to Schedule Refueling of Its Indian Point 3 Nuclear Power Plant," Interfaces, INFORMS, vol. 31(5), pages 121-135, October.
    15. Bulhões, Teobaldo & Correia, Rubens & Subramanian, Anand, 2022. "Conference scheduling: A clustering-based approach," European Journal of Operational Research, Elsevier, vol. 297(1), pages 15-26.
    16. Saharnaz Mehrani & Carlos Cardonha & David Bergman, 2022. "Models and Algorithms for the Bin-Packing Problem with Minimum Color Fragmentation," INFORMS Journal on Computing, INFORMS, vol. 34(2), pages 1070-1085, March.
    17. Teobaldo Bulhões & Ruslan Sadykov & Anand Subramanian & Eduardo Uchoa, 2020. "On the exact solution of a large class of parallel machine scheduling problems," Journal of Scheduling, Springer, vol. 23(4), pages 411-429, August.
    18. Flores-Quiroz, Angela & Strunz, Kai, 2021. "A distributed computing framework for multi-stage stochastic planning of renewable power systems with energy storage as flexibility option," Applied Energy, Elsevier, vol. 291(C).
    19. Artur Alves Pessoa & Michael Poss & Ruslan Sadykov & François Vanderbeck, 2021. "Branch-Cut-and-Price for the Robust Capacitated Vehicle Routing Problem with Knapsack Uncertainty," Operations Research, INFORMS, vol. 69(3), pages 739-754, May.
    20. Quentin Cappart & David Bergman & Louis-Martin Rousseau & Isabeau Prémont-Schwarz & Augustin Parjadis, 2022. "Improving Variable Orderings of Approximate Decision Diagrams Using Reinforcement Learning," INFORMS Journal on Computing, INFORMS, vol. 34(5), pages 2552-2570, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:298:y:2022:i:3:p:1067-1083. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.