IDEAS home Printed from https://ideas.repec.org/a/spr/joheur/v27y2021i4d10.1007_s10732-021-09471-3.html
   My bibliography  Save this article

Qfold: a new modeling paradigm for the RNA folding problem

Author

Listed:
  • Mark W. Lewis

    (Missouri Western State University)

  • Amit Verma

    (Missouri Western State University)

  • Todd T. Eckdahl

    (Missouri Western State University)

Abstract

Ribonucleic acid (RNA) molecules play informational, structural, and metabolic roles in all living cells. RNAs are chains of nucleotides containing bases {A, C, G, U} that interact via base pairings to determine higher order structure and functionality. The RNA folding problem is to predict one or more secondary RNA structures from a given primary sequence of bases. From a mathematical modeling perspective, solutions to the RNA folding problem come from minimizing the thermodynamic free energy of a structure by selecting which bases will be paired, subject to a set of constraints. Here we report on a Quadratic Unconstrained Binary Optimization (QUBO) modeling paradigm that fits naturally with the parameters and constraints required for RNA folding prediction. Three QUBO models are presented along with a hybrid metaheuristic algorithm. Extensive testing results show a strong positive correlation with benchmark results.

Suggested Citation

  • Mark W. Lewis & Amit Verma & Todd T. Eckdahl, 2021. "Qfold: a new modeling paradigm for the RNA folding problem," Journal of Heuristics, Springer, vol. 27(4), pages 695-717, August.
  • Handle: RePEc:spr:joheur:v:27:y:2021:i:4:d:10.1007_s10732-021-09471-3
    DOI: 10.1007/s10732-021-09471-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10732-021-09471-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10732-021-09471-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mauri, Geraldo Regis & Lorena, Luiz Antonio Nogueira, 2012. "A column generation approach for the unconstrained binary quadratic programming problem," European Journal of Operational Research, Elsevier, vol. 217(1), pages 69-74.
    2. Mark Lewis & Gary Kochenberger, 2016. "Probabilistic multistart with path relinking for solving the unconstrained binary quadratic problem," International Journal of Operational Research, Inderscience Enterprises Ltd, vol. 26(1), pages 13-33.
    3. Gary Kochenberger & Jin-Kao Hao & Fred Glover & Mark Lewis & Zhipeng Lü & Haibo Wang & Yang Wang, 2014. "The unconstrained binary quadratic programming problem: a survey," Journal of Combinatorial Optimization, Springer, vol. 28(1), pages 58-81, July.
    4. Jaswinder Singh & Jack Hanson & Kuldip Paliwal & Yaoqi Zhou, 2019. "RNA secondary structure prediction using an ensemble of two-dimensional deep neural networks and transfer learning," Nature Communications, Nature, vol. 10(1), pages 1-13, December.
    5. Fred Glover & Gary Kochenberger & Yu Du, 2019. "Quantum Bridge Analytics I: a tutorial on formulating and using QUBO models," 4OR, Springer, vol. 17(4), pages 335-371, December.
    6. Glover, Fred & Alidaee, Bahram & Rego, Cesar & Kochenberger, Gary, 2002. "One-pass heuristics for large-scale unconstrained binary quadratic problems," European Journal of Operational Research, Elsevier, vol. 137(2), pages 272-287, March.
    7. Wang, Yang & Lü, Zhipeng & Glover, Fred & Hao, Jin-Kao, 2012. "Path relinking for unconstrained binary quadratic programming," European Journal of Operational Research, Elsevier, vol. 223(3), pages 595-604.
    8. Glover, Fred & Lewis, Mark & Kochenberger, Gary, 2018. "Logical and inequality implications for reducing the size and difficulty of quadratic unconstrained binary optimization problems," European Journal of Operational Research, Elsevier, vol. 265(3), pages 829-842.
    9. Francisco Barahona & Martin Grötschel & Michael Jünger & Gerhard Reinelt, 1988. "An Application of Combinatorial Optimization to Statistical Physics and Circuit Layout Design," Operations Research, INFORMS, vol. 36(3), pages 493-513, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fred Glover & Gary Kochenberger & Rick Hennig & Yu Du, 2022. "Quantum bridge analytics I: a tutorial on formulating and using QUBO models," Annals of Operations Research, Springer, vol. 314(1), pages 141-183, July.
    2. Fred Glover & Jin-Kao Hao, 2016. "f-Flip strategies for unconstrained binary quadratic programming," Annals of Operations Research, Springer, vol. 238(1), pages 651-657, March.
    3. Gili Rosenberg & Mohammad Vazifeh & Brad Woods & Eldad Haber, 2016. "Building an iterative heuristic solver for a quantum annealer," Computational Optimization and Applications, Springer, vol. 65(3), pages 845-869, December.
    4. Ricardo N. Liang & Eduardo A. J. Anacleto & Cláudio N. Meneses, 2022. "Data structures for speeding up Tabu Search when solving sparse quadratic unconstrained binary optimization problems," Journal of Heuristics, Springer, vol. 28(4), pages 433-479, August.
    5. Fred Glover & Gary Kochenberger & Yu Du, 2019. "Quantum Bridge Analytics I: a tutorial on formulating and using QUBO models," 4OR, Springer, vol. 17(4), pages 335-371, December.
    6. Fred Glover & Jin-Kao Hao, 2016. "f-Flip strategies for unconstrained binary quadratic programming," Annals of Operations Research, Springer, vol. 238(1), pages 651-657, March.
    7. Byron Tasseff & Tameem Albash & Zachary Morrell & Marc Vuffray & Andrey Y. Lokhov & Sidhant Misra & Carleton Coffrin, 2024. "On the emerging potential of quantum annealing hardware for combinatorial optimization," Journal of Heuristics, Springer, vol. 30(5), pages 325-358, December.
    8. Gary Kochenberger & Jin-Kao Hao & Fred Glover & Mark Lewis & Zhipeng Lü & Haibo Wang & Yang Wang, 2014. "The unconstrained binary quadratic programming problem: a survey," Journal of Combinatorial Optimization, Springer, vol. 28(1), pages 58-81, July.
    9. Michele Samorani & Yang Wang & Yang Wang & Zhipeng Lv & Fred Glover, 2019. "Clustering-driven evolutionary algorithms: an application of path relinking to the quadratic unconstrained binary optimization problem," Journal of Heuristics, Springer, vol. 25(4), pages 629-642, October.
    10. Fred Glover & Gary Kochenberger & Moses Ma & Yu Du, 2020. "Quantum Bridge Analytics II: QUBO-Plus, network optimization and combinatorial chaining for asset exchange," 4OR, Springer, vol. 18(4), pages 387-417, December.
    11. Fred Glover & Gary Kochenberger & Moses Ma & Yu Du, 2022. "Quantum Bridge Analytics II: QUBO-Plus, network optimization and combinatorial chaining for asset exchange," Annals of Operations Research, Springer, vol. 314(1), pages 185-212, July.
    12. Ajagekar, Akshay & You, Fengqi, 2022. "Quantum computing and quantum artificial intelligence for renewable and sustainable energy: A emerging prospect towards climate neutrality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    13. Fuda Ma & Jin-Kao Hao, 2017. "A multiple search operator heuristic for the max-k-cut problem," Annals of Operations Research, Springer, vol. 248(1), pages 365-403, January.
    14. Yves Crama & Michel Grabisch & Silvano Martello, 2022. "Preface," Annals of Operations Research, Springer, vol. 314(1), pages 1-3, July.
    15. Dell'Amico, Mauro & Trubian, Marco, 1998. "Solution of large weighted equicut problems," European Journal of Operational Research, Elsevier, vol. 106(2-3), pages 500-521, April.
    16. Goldengorin, Boris, 2009. "Maximization of submodular functions: Theory and enumeration algorithms," European Journal of Operational Research, Elsevier, vol. 198(1), pages 102-112, October.
    17. Jiaxing Yang, 2024. "Predicting Distance matrix with large language models," Papers 2409.16333, arXiv.org.
    18. Peicong Lin & Yumeng Yan & Huanyu Tao & Sheng-You Huang, 2023. "Deep transfer learning for inter-chain contact predictions of transmembrane protein complexes," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    19. Xunzhao Yin & Yu Qian & Alptekin Vardar & Marcel Günther & Franz Müller & Nellie Laleni & Zijian Zhao & Zhouhang Jiang & Zhiguo Shi & Yiyu Shi & Xiao Gong & Cheng Zhuo & Thomas Kämpfe & Kai Ni, 2024. "Ferroelectric compute-in-memory annealer for combinatorial optimization problems," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    20. Cheng Lu & Zhibin Deng, 2021. "A branch-and-bound algorithm for solving max-k-cut problem," Journal of Global Optimization, Springer, vol. 81(2), pages 367-389, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joheur:v:27:y:2021:i:4:d:10.1007_s10732-021-09471-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.