IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2409.16333.html
   My bibliography  Save this paper

Predicting Distance matrix with large language models

Author

Listed:
  • Jiaxing Yang

Abstract

Structural prediction has long been considered critical in RNA research, especially following the success of AlphaFold2 in protein studies, which has drawn significant attention to the field. While recent advances in machine learning and data accumulation have effectively addressed many biological tasks, particularly in protein related research. RNA structure prediction remains a significant challenge due to data limitations. Obtaining RNA structural data is difficult because traditional methods such as nuclear magnetic resonance spectroscopy, Xray crystallography, and electron microscopy are expensive and time consuming. Although several RNA 3D structure prediction methods have been proposed, their accuracy is still limited. Predicting RNA structural information at another level, such as distance maps, remains highly valuable. Distance maps provide a simplified representation of spatial constraints between nucleotides, capturing essential relationships without requiring a full 3D model. This intermediate level of structural information can guide more accurate 3D modeling and is computationally less intensive, making it a useful tool for improving structural predictions. In this work, we demonstrate that using only primary sequence information, we can accurately infer the distances between RNA bases by utilizing a large pretrained RNA language model coupled with a well trained downstream transformer.

Suggested Citation

  • Jiaxing Yang, 2024. "Predicting Distance matrix with large language models," Papers 2409.16333, arXiv.org.
  • Handle: RePEc:arx:papers:2409.16333
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2409.16333
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yang Li & Chengxin Zhang & Chenjie Feng & Robin Pearce & P. Lydia Freddolino & Yang Zhang, 2023. "Integrating end-to-end learning with deep geometrical potentials for ab initio RNA structure prediction," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    2. Jaswinder Singh & Jack Hanson & Kuldip Paliwal & Yaoqi Zhou, 2019. "RNA secondary structure prediction using an ensemble of two-dimensional deep neural networks and transfer learning," Nature Communications, Nature, vol. 10(1), pages 1-13, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peicong Lin & Yumeng Yan & Huanyu Tao & Sheng-You Huang, 2023. "Deep transfer learning for inter-chain contact predictions of transmembrane protein complexes," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    2. Mark W. Lewis & Amit Verma & Todd T. Eckdahl, 2021. "Qfold: a new modeling paradigm for the RNA folding problem," Journal of Heuristics, Springer, vol. 27(4), pages 695-717, August.
    3. Menghan Liu & Erik Poppleton & Giulia Pedrielli & Petr Ć ulc & Dimitri P. Bertsekas, 2022. "ExpertRNA: A New Framework for RNA Secondary Structure Prediction," INFORMS Journal on Computing, INFORMS, vol. 34(5), pages 2464-2484, September.
    4. Yang Li & Chengxin Zhang & Chenjie Feng & Robin Pearce & P. Lydia Freddolino & Yang Zhang, 2023. "Integrating end-to-end learning with deep geometrical potentials for ab initio RNA structure prediction," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    5. Wenkai Wang & Chenjie Feng & Renmin Han & Ziyi Wang & Lisha Ye & Zongyang Du & Hong Wei & Fa Zhang & Zhenling Peng & Jianyi Yang, 2023. "trRosettaRNA: automated prediction of RNA 3D structure with transformer network," Nature Communications, Nature, vol. 14(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2409.16333. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.