Predicting Distance matrix with large language models
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Yang Li & Chengxin Zhang & Chenjie Feng & Robin Pearce & P. Lydia Freddolino & Yang Zhang, 2023. "Integrating end-to-end learning with deep geometrical potentials for ab initio RNA structure prediction," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
- Jaswinder Singh & Jack Hanson & Kuldip Paliwal & Yaoqi Zhou, 2019. "RNA secondary structure prediction using an ensemble of two-dimensional deep neural networks and transfer learning," Nature Communications, Nature, vol. 10(1), pages 1-13, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Peicong Lin & Yumeng Yan & Huanyu Tao & Sheng-You Huang, 2023. "Deep transfer learning for inter-chain contact predictions of transmembrane protein complexes," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
- Mark W. Lewis & Amit Verma & Todd T. Eckdahl, 2021. "Qfold: a new modeling paradigm for the RNA folding problem," Journal of Heuristics, Springer, vol. 27(4), pages 695-717, August.
- Menghan Liu & Erik Poppleton & Giulia Pedrielli & Petr Ć ulc & Dimitri P. Bertsekas, 2022. "ExpertRNA: A New Framework for RNA Secondary Structure Prediction," INFORMS Journal on Computing, INFORMS, vol. 34(5), pages 2464-2484, September.
- Yang Li & Chengxin Zhang & Chenjie Feng & Robin Pearce & P. Lydia Freddolino & Yang Zhang, 2023. "Integrating end-to-end learning with deep geometrical potentials for ab initio RNA structure prediction," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
- Wenkai Wang & Chenjie Feng & Renmin Han & Ziyi Wang & Lisha Ye & Zongyang Du & Hong Wei & Fa Zhang & Zhenling Peng & Jianyi Yang, 2023. "trRosettaRNA: automated prediction of RNA 3D structure with transformer network," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-BIG-2024-11-04 (Big Data)
- NEP-CMP-2024-11-04 (Computational Economics)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2409.16333. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.