IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v265y2018i3p829-842.html
   My bibliography  Save this article

Logical and inequality implications for reducing the size and difficulty of quadratic unconstrained binary optimization problems

Author

Listed:
  • Glover, Fred
  • Lewis, Mark
  • Kochenberger, Gary

Abstract

The quadratic unconstrained binary optimization (QUBO) problem arises in diverse optimization applications ranging from Ising spin problems to classical problems in graph theory and binary discrete optimization. The use of preprocessing to transform the graph representing the QUBO problem into a smaller equivalent graph is important for improving solution quality and time for both exact and metaheuristic algorithms and is a step towards mapping large scale QUBO to hardware graphs used in quantum annealing computers. In an earlier paper a set of rules was introduced that achieved significant QUBO reductions as verified through computational testing. Here this work is extended with additional rules that provide further reductions that succeed in exactly solving 10% of the benchmark QUBO problems. An algorithm and associated data structures to efficiently implement the entire set of rules is detailed and computational experiments are reported that demonstrate their efficacy.

Suggested Citation

  • Glover, Fred & Lewis, Mark & Kochenberger, Gary, 2018. "Logical and inequality implications for reducing the size and difficulty of quadratic unconstrained binary optimization problems," European Journal of Operational Research, Elsevier, vol. 265(3), pages 829-842.
  • Handle: RePEc:eee:ejores:v:265:y:2018:i:3:p:829-842
    DOI: 10.1016/j.ejor.2017.08.025
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221717307567
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2017.08.025?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mauri, Geraldo Regis & Lorena, Luiz Antonio Nogueira, 2012. "A column generation approach for the unconstrained binary quadratic programming problem," European Journal of Operational Research, Elsevier, vol. 217(1), pages 69-74.
    2. Fred Glover & Gary A. Kochenberger & Bahram Alidaee, 1998. "Adaptive Memory Tabu Search for Binary Quadratic Programs," Management Science, INFORMS, vol. 44(3), pages 336-345, March.
    3. Jeffery L. Kennington & Karen R. Lewis, 2004. "Generalized Networks: The Theory of Preprocessing and an Empirical Analysis," INFORMS Journal on Computing, INFORMS, vol. 16(2), pages 162-173, May.
    4. Kim, Jongkwang & Wilhelm, Thomas, 2008. "What is a complex graph?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(11), pages 2637-2652.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fred Glover & Gary Kochenberger & Rick Hennig & Yu Du, 2022. "Quantum bridge analytics I: a tutorial on formulating and using QUBO models," Annals of Operations Research, Springer, vol. 314(1), pages 141-183, July.
    2. Fred Glover & Gary Kochenberger & Yu Du, 2019. "Quantum Bridge Analytics I: a tutorial on formulating and using QUBO models," 4OR, Springer, vol. 17(4), pages 335-371, December.
    3. Fred Glover & Gary Kochenberger & Moses Ma & Yu Du, 2022. "Quantum Bridge Analytics II: QUBO-Plus, network optimization and combinatorial chaining for asset exchange," Annals of Operations Research, Springer, vol. 314(1), pages 185-212, July.
    4. Mark W. Lewis & Amit Verma & Todd T. Eckdahl, 2021. "Qfold: a new modeling paradigm for the RNA folding problem," Journal of Heuristics, Springer, vol. 27(4), pages 695-717, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gili Rosenberg & Mohammad Vazifeh & Brad Woods & Eldad Haber, 2016. "Building an iterative heuristic solver for a quantum annealer," Computational Optimization and Applications, Springer, vol. 65(3), pages 845-869, December.
    2. Tuğal, İhsan & Karcı, Ali, 2019. "Comparisons of Karcı and Shannon entropies and their effects on centrality of social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 352-363.
    3. Tao Pham Dinh & Nam Nguyen Canh & Hoai Le Thi, 2010. "An efficient combined DCA and B&B using DC/SDP relaxation for globally solving binary quadratic programs," Journal of Global Optimization, Springer, vol. 48(4), pages 595-632, December.
    4. Bahram Alidaee & Haibo Wang, 2017. "A note on heuristic approach based on UBQP formulation of the maximum diversity problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(1), pages 102-110, January.
    5. Goldengorin, Boris & Ghosh, Diptesh, 2004. "A Multilevel Search Algorithm for the Maximization of Submodular Functions," Research Report 04A20, University of Groningen, Research Institute SOM (Systems, Organisations and Management).
    6. Lavanya Sivakumar & Matthias Dehmer, 2012. "Towards Information Inequalities for Generalized Graph Entropies," PLOS ONE, Public Library of Science, vol. 7(6), pages 1-14, June.
    7. Wang, Haibo & Alidaee, Bahram, 2019. "Effective heuristic for large-scale unrelated parallel machines scheduling problems," Omega, Elsevier, vol. 83(C), pages 261-274.
    8. Mauri, Geraldo Regis & Lorena, Luiz Antonio Nogueira, 2012. "A column generation approach for the unconstrained binary quadratic programming problem," European Journal of Operational Research, Elsevier, vol. 217(1), pages 69-74.
    9. Fred Glover & Gary Kochenberger & Rick Hennig & Yu Du, 2022. "Quantum bridge analytics I: a tutorial on formulating and using QUBO models," Annals of Operations Research, Springer, vol. 314(1), pages 141-183, July.
    10. Glover, Fred & Alidaee, Bahram & Rego, Cesar & Kochenberger, Gary, 2002. "One-pass heuristics for large-scale unconstrained binary quadratic problems," European Journal of Operational Research, Elsevier, vol. 137(2), pages 272-287, March.
    11. Zenil, Hector & Soler-Toscano, Fernando & Dingle, Kamaludin & Louis, Ard A., 2014. "Correlation of automorphism group size and topological properties with program-size complexity evaluations of graphs and complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 404(C), pages 341-358.
    12. Goldengorin, Boris & Vink, Marius de, 1999. "Solving large instances of the quadratic cost of partition problem on dense graphs by data correcting algorithms," Research Report 99A50, University of Groningen, Research Institute SOM (Systems, Organisations and Management).
    13. Wang, Jiang & Yang, Chen & Wang, Ruofan & Yu, Haitao & Cao, Yibin & Liu, Jing, 2016. "Functional brain networks in Alzheimer’s disease: EEG analysis based on limited penetrable visibility graph and phase space method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 460(C), pages 174-187.
    14. Raducha, Tomasz & Gubiec, Tomasz, 2017. "Coevolving complex networks in the model of social interactions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 427-435.
    15. Frank Emmert-Streib, 2013. "Structural Properties and Complexity of a New Network Class: Collatz Step Graphs," PLOS ONE, Public Library of Science, vol. 8(2), pages 1-14, February.
    16. Lü, Zhipeng & Glover, Fred & Hao, Jin-Kao, 2010. "A hybrid metaheuristic approach to solving the UBQP problem," European Journal of Operational Research, Elsevier, vol. 207(3), pages 1254-1262, December.
    17. Alidaee, Bahram & Glover, Fred & Kochenberger, Gary & Wang, Haibo, 2007. "Solving the maximum edge weight clique problem via unconstrained quadratic programming," European Journal of Operational Research, Elsevier, vol. 181(2), pages 592-597, September.
    18. Mohan Gopalakrishnan & Ke Ding & Jean-Marie Bourjolly & Srimathy Mohan, 2001. "A Tabu-Search Heuristic for the Capacitated Lot-Sizing Problem with Set-up Carryover," Management Science, INFORMS, vol. 47(6), pages 851-863, June.
    19. Lin, Yun Hui & Wang, Yuan & Lee, Loo Hay & Chew, Ek Peng, 2021. "Consistency matters: Revisiting the structural complexity for supply chain networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 572(C).
    20. Regis Mauri, Geraldo, 2019. "Improved mathematical model and bounds for the crop rotation scheduling problem with adjacency constraints," European Journal of Operational Research, Elsevier, vol. 278(1), pages 120-135.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:265:y:2018:i:3:p:829-842. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.