IDEAS home Printed from https://ideas.repec.org/a/spr/joheur/v25y2019i6d10.1007_s10732-019-09415-y.html
   My bibliography  Save this article

An application of generalised simulated annealing towards the simultaneous modelling and clustering of glaucoma

Author

Listed:
  • Mohd Zairul Mazwan Bin Jilani

    (Brunel University London)

  • Allan Tucker

    (Brunel University London)

  • Stephen Swift

    (Brunel University London)

Abstract

Optimisation methods are widely used in complex data analysis, and as such, there is a need to develop techniques that can explore huge search spaces in an efficient and effective manner. Generalised simulated annealing is a continuous optimisation method which is an advanced version of the commonly used simulated annealing technique. The method is designed to search for the global optimum solution and avoid being trapped in local optima. This paper presents an application of a specially adapted generalised simulated annealing algorithm applied to a discrete problem, namely simultaneous modelling and clustering of visual field data. Visual field data is commonly used in managing glaucoma, a disease which is the second largest cause of blindness in the developing world. The simultaneous modelling and clustering is a model based clustering technique aimed at finding the best grouping of visual field data based upon prediction accuracy. The results using our tailored optimisation method show improvements in prediction accuracy and our proposed method appears to have an efficient search in terms of convergence point compared to traditional techniques. Our method is also tested on synthetic data and the results verify that generalised simulated annealing locates the optimal clusters efficiently as well as improving prediction accuracy.

Suggested Citation

  • Mohd Zairul Mazwan Bin Jilani & Allan Tucker & Stephen Swift, 2019. "An application of generalised simulated annealing towards the simultaneous modelling and clustering of glaucoma," Journal of Heuristics, Springer, vol. 25(6), pages 933-957, December.
  • Handle: RePEc:spr:joheur:v:25:y:2019:i:6:d:10.1007_s10732-019-09415-y
    DOI: 10.1007/s10732-019-09415-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10732-019-09415-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10732-019-09415-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Menin, Olavo H. & Bauch, Chris T., 2018. "Solving the patient zero inverse problem by using generalized simulated annealing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 1513-1521.
    2. Tsallis, Constantino & Stariolo, Daniel A., 1996. "Generalized simulated annealing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 233(1), pages 395-406.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rubenthaler, Sylvain & Rydén, Tobias & Wiktorsson, Magnus, 2009. "Fast simulated annealing in with an application to maximum likelihood estimation in state-space models," Stochastic Processes and their Applications, Elsevier, vol. 119(6), pages 1912-1931, June.
    2. Moriguchi, Kai & Ueki, Tatsuhito & Saito, Masashi, 2020. "Establishing optimal forest harvesting regulation with continuous approximation," Operations Research Perspectives, Elsevier, vol. 7(C).
    3. Fabbri, Ricardo & Gonçalves, Wesley N. & Lopes, Francisco J.P. & Bruno, Odemir M., 2012. "Multi-q pattern analysis: A case study in image classification," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(19), pages 4487-4496.
    4. Li, Jiang-Cheng & Tao, Chen & Li, Hai-Feng, 2022. "Dynamic forecasting performance and liquidity evaluation of financial market by Econophysics and Bayesian methods," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 588(C).
    5. Robson, Dominic T. & Annibale, Alessia & Baas, Andreas C.W., 2022. "Reproducing size distributions of swarms of barchan dunes on Mars and Earth using a mean-field model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 606(C).
    6. Menin, Olavo H. & Bauch, Chris T., 2018. "Solving the patient zero inverse problem by using generalized simulated annealing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 1513-1521.
    7. Dukkipati, Ambedkar & Bhatnagar, Shalabh & Murty, M. Narasimha, 2007. "On measure-theoretic aspects of nonextensive entropy functionals and corresponding maximum entropy prescriptions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 384(2), pages 758-774.
    8. Chen, Yu-Wang & Zhu, Yao-Jia & Yang, Gen-Ke & Lu, Yong-Zai, 2011. "Improved extremal optimization for the asymmetric traveling salesman problem," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(23), pages 4459-4465.
    9. Aristoklis D. Anastasiadis & Marcelo P. Albuquerque & Marcio P. Albuquerque & Diogo B. Mussi, 2010. "Tsallis q-exponential describes the distribution of scientific citations—a new characterization of the impact," Scientometrics, Springer;Akadémiai Kiadó, vol. 83(1), pages 205-218, April.
    10. Takaya Fukui & Seisho Sato & Akihiko Takahashi, 2016. "Style Analysis with Particle Filtering and Generalized Simulated Annealing," CIRJE F-Series CIRJE-F-1010, CIRJE, Faculty of Economics, University of Tokyo.
    11. Anastasiadis, Aristoklis D. & Magoulas, George D., 2004. "Nonextensive statistical mechanics for hybrid learning of neural networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 344(3), pages 372-382.
    12. Wael Korani & Malek Mouhoub, 2021. "Review on Nature-Inspired Algorithms," SN Operations Research Forum, Springer, vol. 2(3), pages 1-26, September.
    13. Thomas Welchowski & Matthias Schmid, 2019. "Sparse kernel deep stacking networks," Computational Statistics, Springer, vol. 34(3), pages 993-1014, September.
    14. Siqin Wang & Yan Liu & Yongjiu Feng & Zhenkun Lei, 2022. "Spatially-explicit prediction of low-density peri-urban development: comparison between urban and rural scenarios in the Moreton Bay Region in South East Queensland, Australia," Environment and Planning B, , vol. 49(7), pages 1820-1837, September.
    15. Chang-Yong Lee & Dongju Lee, 2014. "Determination of initial temperature in fast simulated annealing," Computational Optimization and Applications, Springer, vol. 58(2), pages 503-522, June.
    16. Jinyu Zhang & Kang Gao & Yong Li & Qiaosen Zhang, 2022. "Maximum Likelihood Estimation Methods for Copula Models," Computational Economics, Springer;Society for Computational Economics, vol. 60(1), pages 99-124, June.
    17. Takaya Fukui & Seisho Sato & Akihiko Takahashi, 2017. "This paper proposes a new approach to style analysis of mutual funds in a general state space framework with particle filtering and generalized simulated annealing (GSA). Speci cally, we regard the ex," CARF F-Series CARF-F-383, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    18. Jelić, Marko & Batić, Marko & Krstić, Aleksandra & Bottarelli, Michele & Mainardi, Elena, 2023. "Comparative analysis of metaheuristic optimization approaches for multisource heat pump operation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    19. Samaddar, Arunava & Jackson, Brooke S. & Helms, Christopher J. & Lazar, Nicole A. & McDowell, Jennifer E. & Park, Cheolwoo, 2022. "A group comparison in fMRI data using a semiparametric model under shape invariance," Computational Statistics & Data Analysis, Elsevier, vol. 167(C).
    20. Firmino, Paulo Renato Alves & de Sales, Jair Paulino & Gonçalves Júnior, Jucier & da Silva, Taciana Araújo, 2020. "A non-central beta model to forecast and evaluate pandemics time series," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joheur:v:25:y:2019:i:6:d:10.1007_s10732-019-09415-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.