IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v58y2014i2p503-522.html
   My bibliography  Save this article

Determination of initial temperature in fast simulated annealing

Author

Listed:
  • Chang-Yong Lee
  • Dongju Lee

Abstract

In this paper, we propose a method of determining the initial temperature for continuous fast simulated annealing from the perspective of state variation. While the conventional method utilizes fitness variation, the proposed method additionally considers genotype variation. The proposed scheme is based on the fact that the annealing temperature, which includes the initial temperature, not only appears in the acceptance probability but serves as the scale parameter of a state generating probability distribution. We theoretically derive an expression for the probability of generating states to cover the state space in conjunction with the convergence property of the fast simulated annealing. We then numerically solve the expression to determine the initial temperature. We empirically show that the proposed method outperforms the conventional one in optimizing various benchmarking functions. Copyright Springer Science+Business Media New York 2014

Suggested Citation

  • Chang-Yong Lee & Dongju Lee, 2014. "Determination of initial temperature in fast simulated annealing," Computational Optimization and Applications, Springer, vol. 58(2), pages 503-522, June.
  • Handle: RePEc:spr:coopap:v:58:y:2014:i:2:p:503-522
    DOI: 10.1007/s10589-013-9631-y
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10589-013-9631-y
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10589-013-9631-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. David S. Johnson & Cecilia R. Aragon & Lyle A. McGeoch & Catherine Schevon, 1989. "Optimization by Simulated Annealing: An Experimental Evaluation; Part I, Graph Partitioning," Operations Research, INFORMS, vol. 37(6), pages 865-892, December.
    2. B Suman & P Kumar, 2006. "A survey of simulated annealing as a tool for single and multiobjective optimization," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(10), pages 1143-1160, October.
    3. Hedar, Abdel-Rahman & Fukushima, Masao, 2006. "Tabu Search directed by direct search methods for nonlinear global optimization," European Journal of Operational Research, Elsevier, vol. 170(2), pages 329-349, April.
    4. L. Ingber, 1989. "Very fast simulated re-annealing," Lester Ingber Papers 89vf, Lester Ingber.
    5. David S. Johnson & Cecilia R. Aragon & Lyle A. McGeoch & Catherine Schevon, 1991. "Optimization by Simulated Annealing: An Experimental Evaluation; Part II, Graph Coloring and Number Partitioning," Operations Research, INFORMS, vol. 39(3), pages 378-406, June.
    6. L. Ingber, 2012. "Adaptive simulated annealing," Lester Ingber Papers 12as, Lester Ingber.
    7. Tsallis, Constantino & Stariolo, Daniel A., 1996. "Generalized simulated annealing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 233(1), pages 395-406.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Schlereth, Christian & Stepanchuk, Tanja & Skiera, Bernd, 2010. "Optimization and analysis of the profitability of tariff structures with two-part tariffs," European Journal of Operational Research, Elsevier, vol. 206(3), pages 691-701, November.
    2. B Suman & P Kumar, 2006. "A survey of simulated annealing as a tool for single and multiobjective optimization," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(10), pages 1143-1160, October.
    3. Genetha Anne Gray & Tamara G. Kolda & Ken Sale & Malin M. Young, 2004. "Optimizing an Empirical Scoring Function for Transmembrane Protein Structure Determination," INFORMS Journal on Computing, INFORMS, vol. 16(4), pages 406-418, November.
    4. Hadi Moheb-Alizadeh & Donald P. Warsing & Richard E. Kouri & Sajjad Taghiyeh & Robert B. Handfield, 2024. "Optimization of testing protocols to screen for COVID-19: a multi-objective model," Health Care Management Science, Springer, vol. 27(4), pages 580-603, December.
    5. Pirlot, Marc, 1996. "General local search methods," European Journal of Operational Research, Elsevier, vol. 92(3), pages 493-511, August.
    6. Moriguchi, Kai & Ueki, Tatsuhito & Saito, Masashi, 2020. "Establishing optimal forest harvesting regulation with continuous approximation," Operations Research Perspectives, Elsevier, vol. 7(C).
    7. S.-C. Horng & S.-Y. Lin, 2009. "Ordinal Optimization of G/G/1/K Polling Systems with k-Limited Service Discipline," Journal of Optimization Theory and Applications, Springer, vol. 140(2), pages 213-231, February.
    8. Sha Lin & Xin-Jiang He, 2022. "Analytically Pricing European Options under a New Two-Factor Heston Model with Regime Switching," Computational Economics, Springer;Society for Computational Economics, vol. 59(3), pages 1069-1085, March.
    9. L. Ingber, 2018. "Model of Models (MOM)," Lester Ingber Papers 18mo, Lester Ingber.
    10. Kim, Yeong-Dae & Lim, Hyeong-Gyu & Park, Moon-Won, 1996. "Search heuristics for a flowshop scheduling problem in a printed circuit board assembly process," European Journal of Operational Research, Elsevier, vol. 91(1), pages 124-143, May.
    11. Lester Ingber, 2020. "Developing Bid-Ask Probabilities for High-Frequency Trading," Virtual Economics, The London Academy of Science and Business, vol. 3(2), pages 7-24, April.
    12. Khan, W. A. & Hayhurst, D. R. & Cannings, C., 1999. "Determination of optimal path under approach and exit constraints," European Journal of Operational Research, Elsevier, vol. 117(2), pages 310-325, September.
    13. Sabuncuoglu, Ihsan & Erel, Erdal & Alp, Arda, 2009. "Ant colony optimization for the single model U-type assembly line balancing problem," International Journal of Production Economics, Elsevier, vol. 120(2), pages 287-300, August.
    14. Drexl, Andreas & Haase, Knut, 1993. "Sequential-analysis-based randomized-regret-methods for lotsizing and scheduling," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 323, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    15. Robin C. Ball & Juergen Branke & Stephan Meisel, 2018. "Optimal Sampling for Simulated Annealing Under Noise," INFORMS Journal on Computing, INFORMS, vol. 30(1), pages 200-215, February.
    16. Michael J. Brusco & Larry W. Jacobs, 1993. "A simulated annealing approach to the cyclic staff‐scheduling problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 40(1), pages 69-84, February.
    17. Laurent Michel & Pascal Van Hentenryck, 1999. "Localizer: A Modeling Language for Local Search," INFORMS Journal on Computing, INFORMS, vol. 11(1), pages 1-14, February.
    18. Van Breedam, Alex, 1995. "Improvement heuristics for the Vehicle Routing Problem based on simulated annealing," European Journal of Operational Research, Elsevier, vol. 86(3), pages 480-490, November.
    19. L. Ingber, 2020. "Forecasting with importance-sampling and path-integrals: Applications to COVID-19," Lester Ingber Papers 20fi, Lester Ingber.
    20. Preminger, Arie & Franck, Raphael, 2007. "Forecasting exchange rates: A robust regression approach," International Journal of Forecasting, Elsevier, vol. 23(1), pages 71-84.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:58:y:2014:i:2:p:503-522. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.