IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v390y2011i23p4459-4465.html
   My bibliography  Save this article

Improved extremal optimization for the asymmetric traveling salesman problem

Author

Listed:
  • Chen, Yu-Wang
  • Zhu, Yao-Jia
  • Yang, Gen-Ke
  • Lu, Yong-Zai

Abstract

This paper presents an improved extremal optimization (IEO) algorithm for solving the asymmetric traveling salesman problem (ATSP). At each update step, the IEO algorithm proceeds through two main steps: extremal dynamics and cooperative optimization. As an improvement of extremal optimization (EO), the IEO provides a general combinatorial optimization framework by emphasizing the step of cooperative optimization. In the paper, an effective cooperative optimization strategy with combination of greedy search and random walk is designed in terms of the microscopic characteristics of the ATSP solutions. Simulation results on a set of benchmark ATSP instances show that the proposed IEO algorithm provides satisfactory performance on computational effectiveness and efficiency.

Suggested Citation

  • Chen, Yu-Wang & Zhu, Yao-Jia & Yang, Gen-Ke & Lu, Yong-Zai, 2011. "Improved extremal optimization for the asymmetric traveling salesman problem," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(23), pages 4459-4465.
  • Handle: RePEc:eee:phsmap:v:390:y:2011:i:23:p:4459-4465
    DOI: 10.1016/j.physa.2011.06.070
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437111005176
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2011.06.070?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tsallis, Constantino & Stariolo, Daniel A., 1996. "Generalized simulated annealing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 233(1), pages 395-406.
    2. Zeng, Guo-Qiang & Lu, Yong-Zai & Mao, Wei-Jie & Chu, Jian, 2010. "Study on probability distributions for evolution in modified extremal optimization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(9), pages 1922-1930.
    3. S. Lin & B. W. Kernighan, 1973. "An Effective Heuristic Algorithm for the Traveling-Salesman Problem," Operations Research, INFORMS, vol. 21(2), pages 498-516, April.
    4. Chen, Yu-Wang & Lu, Yong-Zai & Chen, Peng, 2007. "Optimization with extremal dynamics for the traveling salesman problem," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 385(1), pages 115-123.
    5. G Laporte, 2010. "A concise guide to the Traveling Salesman Problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(1), pages 35-40, January.
    6. Helsgaun, Keld, 2000. "An effective implementation of the Lin-Kernighan traveling salesman heuristic," European Journal of Operational Research, Elsevier, vol. 126(1), pages 106-130, October.
    7. Paris-C. Kanellakis & Christos H. Papadimitriou, 1980. "Local Search for the Asymmetric Traveling Salesman Problem," Operations Research, INFORMS, vol. 28(5), pages 1086-1099, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Min-Rong Chen & Huan Wang & Guo-Qiang Zeng & Yu-Xing Dai & Da-Qiang Bi, 2018. "Optimal P-Q Control of Grid-Connected Inverters in a Microgrid Based on Adaptive Population Extremal Optimization," Energies, MDPI, vol. 11(8), pages 1-19, August.
    2. Huang, Zhendong & Xiao, Renbin, 2013. "An emergent computation approach to the problem of polygon layout with performance constraints," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(20), pages 5074-5088.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gary R. Waissi & Pragya Kaushal, 2020. "A polynomial matrix processing heuristic algorithm for finding high quality feasible solutions for the TSP," OPSEARCH, Springer;Operational Research Society of India, vol. 57(1), pages 73-87, March.
    2. Calvete, Herminia I. & Galé, Carmen & Iranzo, José A., 2016. "MEALS: A multiobjective evolutionary algorithm with local search for solving the bi-objective ring star problem," European Journal of Operational Research, Elsevier, vol. 250(2), pages 377-388.
    3. K Sang-Ho & G Young-Gun & K Maing-Kyu, 2003. "Application of the out-of-kilter algorithm to the asymmetric traveling salesman problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 54(10), pages 1085-1092, October.
    4. Nikolakopoulos, Athanassios & Sarimveis, Haralambos, 2007. "A threshold accepting heuristic with intense local search for the solution of special instances of the traveling salesman problem," European Journal of Operational Research, Elsevier, vol. 177(3), pages 1911-1929, March.
    5. César Rego & Fred Glover, 2010. "Ejection chain and filter-and-fan methods in combinatorial optimization," Annals of Operations Research, Springer, vol. 175(1), pages 77-105, March.
    6. Huang, Zhendong & Xiao, Renbin, 2013. "An emergent computation approach to the problem of polygon layout with performance constraints," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(20), pages 5074-5088.
    7. Rego, César & Gamboa, Dorabela & Glover, Fred & Osterman, Colin, 2011. "Traveling salesman problem heuristics: Leading methods, implementations and latest advances," European Journal of Operational Research, Elsevier, vol. 211(3), pages 427-441, June.
    8. Ghosh, Diptesh, 2016. "Exploring Lin Kernighan neighborhoods for the indexing problem," IIMA Working Papers WP2016-02-13, Indian Institute of Management Ahmedabad, Research and Publication Department.
    9. Pan-Li Zhang & Xiao-Bo Sun & Ji-Quan Wang & Hao-Hao Song & Jin-Ling Bei & Hong-Yu Zhang, 2022. "The Discrete Carnivorous Plant Algorithm with Similarity Elimination Applied to the Traveling Salesman Problem," Mathematics, MDPI, vol. 10(18), pages 1-34, September.
    10. Jiang, Zhongzhou & Liu, Jing & Wang, Shuai, 2016. "Traveling salesman problems with PageRank Distance on complex networks reveal community structure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 463(C), pages 293-302.
    11. Henke, Tino & Speranza, M. Grazia & Wäscher, Gerhard, 2015. "The multi-compartment vehicle routing problem with flexible compartment sizes," European Journal of Operational Research, Elsevier, vol. 246(3), pages 730-743.
    12. Lamb, John D., 2012. "Variable neighbourhood structures for cycle location problems," European Journal of Operational Research, Elsevier, vol. 223(1), pages 15-26.
    13. Escobar, John Willmer & Linfati, Rodrigo & Baldoquin, Maria G. & Toth, Paolo, 2014. "A Granular Variable Tabu Neighborhood Search for the capacitated location-routing problem," Transportation Research Part B: Methodological, Elsevier, vol. 67(C), pages 344-356.
    14. Manerba, Daniele & Mansini, Renata & Riera-Ledesma, Jorge, 2017. "The Traveling Purchaser Problem and its variants," European Journal of Operational Research, Elsevier, vol. 259(1), pages 1-18.
    15. Farasat, Alireza & Nikolaev, Alexander G., 2016. "Signed social structure optimization for shift assignment in the nurse scheduling problem," Socio-Economic Planning Sciences, Elsevier, vol. 56(C), pages 3-13.
    16. Qiu, Yuzhuo & Zhou, Dan & Du, Yanan & Liu, Jie & Pardalos, Panos M. & Qiao, Jun, 2021. "The two-echelon production routing problem with cross-docking satellites," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 147(C).
    17. Karapetyan, D. & Gutin, G., 2011. "Lin-Kernighan heuristic adaptations for the generalized traveling salesman problem," European Journal of Operational Research, Elsevier, vol. 208(3), pages 221-232, February.
    18. Mor, A. & Speranza, M.G. & Viegas, J.M., 2020. "Efficient loading and unloading operations via a booking system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 141(C).
    19. Rui Xu & Yumiao Huang & Wei Xiao, 2023. "A Two-Level Variable Neighborhood Descent for a Split Delivery Clustered Vehicle Routing Problem with Soft Cluster Conflicts and Customer-Related Costs," Sustainability, MDPI, vol. 15(9), pages 1-22, May.
    20. Hipólito Hernández-Pérez & Juan-José Salazar-González, 2004. "Heuristics for the One-Commodity Pickup-and-Delivery Traveling Salesman Problem," Transportation Science, INFORMS, vol. 38(2), pages 245-255, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:390:y:2011:i:23:p:4459-4465. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.