IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v167y2022ics016794732100195x.html
   My bibliography  Save this article

A group comparison in fMRI data using a semiparametric model under shape invariance

Author

Listed:
  • Samaddar, Arunava
  • Jackson, Brooke S.
  • Helms, Christopher J.
  • Lazar, Nicole A.
  • McDowell, Jennifer E.
  • Park, Cheolwoo

Abstract

In the analysis of functional magnetic resonance imaging (fMRI) data, a common type of analysis is to compare differences across scanning sessions. A challenge to direct comparisons of this type is the low signal-to-noise ratio in fMRI data. By using the property that brain signals from a task-related experiment may exhibit a similar pattern in regions of interest across participants, a semiparametric approach under shape invariance to quantify and test the differences in sessions and groups is developed. The common function is estimated with local polynomial regression and the shape invariance model parameters are estimated using evolutionary optimization methods. The efficacy of the semi-parametric approach is demonstrated on a study of brain activation changes across two sessions associated with practice-related cognitive control. The objective of the study is to evaluate neural circuitry supporting a cognitive control task, and associated practice-related changes via acquisition of blood oxygenation level dependent (BOLD) signal collected using fMRI. By using the proposed approach, BOLD signals in multiple regions of interest for control participants and participants with schizophrenia are compared as they perform a cognitive control task (known as the antisaccade task) at two sessions, and the effects of task practice in these groups are quantified.

Suggested Citation

  • Samaddar, Arunava & Jackson, Brooke S. & Helms, Christopher J. & Lazar, Nicole A. & McDowell, Jennifer E. & Park, Cheolwoo, 2022. "A group comparison in fMRI data using a semiparametric model under shape invariance," Computational Statistics & Data Analysis, Elsevier, vol. 167(C).
  • Handle: RePEc:eee:csdana:v:167:y:2022:i:c:s016794732100195x
    DOI: 10.1016/j.csda.2021.107361
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S016794732100195X
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2021.107361?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tsallis, Constantino & Stariolo, Daniel A., 1996. "Generalized simulated annealing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 233(1), pages 395-406.
    2. Welvaert, Marijke & Durnez, Joke & Moerkerke, Beatrijs & Berdoolaege, Geert & Rosseel, Yves, 2011. "neuRosim: An R Package for Generating fMRI Data," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 44(i10).
    3. Engel, J & Kneip, A, 1995. "Model Estimation in Nonlinear Regression," Papers 9510, Catholique de Louvain - Institut de statistique.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rubenthaler, Sylvain & Rydén, Tobias & Wiktorsson, Magnus, 2009. "Fast simulated annealing in with an application to maximum likelihood estimation in state-space models," Stochastic Processes and their Applications, Elsevier, vol. 119(6), pages 1912-1931, June.
    2. Moriguchi, Kai & Ueki, Tatsuhito & Saito, Masashi, 2020. "Establishing optimal forest harvesting regulation with continuous approximation," Operations Research Perspectives, Elsevier, vol. 7(C).
    3. Chang-Yong Lee & Dongju Lee, 2014. "Determination of initial temperature in fast simulated annealing," Computational Optimization and Applications, Springer, vol. 58(2), pages 503-522, June.
    4. Jinyu Zhang & Kang Gao & Yong Li & Qiaosen Zhang, 2022. "Maximum Likelihood Estimation Methods for Copula Models," Computational Economics, Springer;Society for Computational Economics, vol. 60(1), pages 99-124, June.
    5. Garikoitz Lerma-Usabiaga & Noah Benson & Jonathan Winawer & Brian A Wandell, 2020. "A validation framework for neuroimaging software: The case of population receptive fields," PLOS Computational Biology, Public Library of Science, vol. 16(6), pages 1-18, June.
    6. Takaya Fukui & Seisho Sato & Akihiko Takahashi, 2017. "This paper proposes a new approach to style analysis of mutual funds in a general state space framework with particle filtering and generalized simulated annealing (GSA). Speci cally, we regard the ex," CARF F-Series CARF-F-383, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    7. Fabbri, Ricardo & Gonçalves, Wesley N. & Lopes, Francisco J.P. & Bruno, Odemir M., 2012. "Multi-q pattern analysis: A case study in image classification," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(19), pages 4487-4496.
    8. Daniel Spencer & Rajarshi Guhaniyogi & Raquel Prado, 2020. "Joint Bayesian Estimation of Voxel Activation and Inter-regional Connectivity in fMRI Experiments," Psychometrika, Springer;The Psychometric Society, vol. 85(4), pages 845-869, December.
    9. Ani Eloyan & Shanshan Li & John Muschelli & Jim J Pekar & Stewart H Mostofsky & Brian S Caffo, 2014. "Analytic Programming with fMRI Data: A Quick-Start Guide for Statisticians Using R," PLOS ONE, Public Library of Science, vol. 9(2), pages 1-13, February.
    10. Jelić, Marko & Batić, Marko & Krstić, Aleksandra & Bottarelli, Michele & Mainardi, Elena, 2023. "Comparative analysis of metaheuristic optimization approaches for multisource heat pump operation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    11. Cardona Jiménez, Johnatan & de B. Pereira, Carlos A., 2021. "Assessing dynamic effects on a Bayesian matrix-variate dynamic linear model: An application to task-based fMRI data analysis," Computational Statistics & Data Analysis, Elsevier, vol. 163(C).
    12. Li, Jiang-Cheng & Tao, Chen & Li, Hai-Feng, 2022. "Dynamic forecasting performance and liquidity evaluation of financial market by Econophysics and Bayesian methods," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 588(C).
    13. Robson, Dominic T. & Annibale, Alessia & Baas, Andreas C.W., 2022. "Reproducing size distributions of swarms of barchan dunes on Mars and Earth using a mean-field model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 606(C).
    14. Menin, Olavo H. & Bauch, Chris T., 2018. "Solving the patient zero inverse problem by using generalized simulated annealing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 1513-1521.
    15. Schick, Anton, 1999. "Efficient estimation of a shift in nonparametric regression," Statistics & Probability Letters, Elsevier, vol. 41(3), pages 287-301, February.
    16. Dukkipati, Ambedkar & Bhatnagar, Shalabh & Murty, M. Narasimha, 2007. "On measure-theoretic aspects of nonextensive entropy functionals and corresponding maximum entropy prescriptions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 384(2), pages 758-774.
    17. Daniel Gervini & Patrick A. Carter, 2014. "Warped functional analysis of variance," Biometrics, The International Biometric Society, vol. 70(3), pages 526-535, September.
    18. Chen, Yu-Wang & Zhu, Yao-Jia & Yang, Gen-Ke & Lu, Yong-Zai, 2011. "Improved extremal optimization for the asymmetric traveling salesman problem," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(23), pages 4459-4465.
    19. Sam Efromovich & Jiayi Wu, 2018. "Wavelet Analysis of Big Data Contaminated by Large Noise in an fMRI Study of Neuroplasticity," Methodology and Computing in Applied Probability, Springer, vol. 20(4), pages 1381-1402, December.
    20. Cheng‐Han Yu & Raquel Prado & Hernando Ombao & Daniel Rowe, 2023. "Bayesian spatiotemporal modeling on complex‐valued fMRI signals via kernel convolutions," Biometrics, The International Biometric Society, vol. 79(2), pages 616-628, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:167:y:2022:i:c:s016794732100195x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.