IDEAS home Printed from https://ideas.repec.org/a/spr/joheur/v25y2019i1d10.1007_s10732-018-9386-9.html
   My bibliography  Save this article

Combining simulated annealing with local search heuristic for MAX-SAT

Author

Listed:
  • Noureddine Bouhmala

    (SouthEast University)

Abstract

The simplicity of the maximum satisfiability problem combined with its wide applicability in various areas of artificial intelligence and computing science made it one of the fundamental optimization problems. This NP-complete problem refers to the task of finding a variable assignment that satisfies the maximum number of clauses in a Boolean Formula. The present consensus is that the best heuristic that leads to the best solutions for the partitioning of generic (random) graphs is a variable depth search due to Kernighan and Lin algorithm hereafter referred to as KL. It suggests an intriguing idea which is based on replacing the search of one favorable move by a search for a favorable sequence of moves. In this paper, an adapted version of KL for the maximum satisfiability problem is introduced and embedded into the simulated annealing algorithm. Tests on benchmark instances and comparison with state-of-the-art solvers quantify the power of the method.

Suggested Citation

  • Noureddine Bouhmala, 2019. "Combining simulated annealing with local search heuristic for MAX-SAT," Journal of Heuristics, Springer, vol. 25(1), pages 47-69, February.
  • Handle: RePEc:spr:joheur:v:25:y:2019:i:1:d:10.1007_s10732-018-9386-9
    DOI: 10.1007/s10732-018-9386-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10732-018-9386-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10732-018-9386-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. David S. Johnson & Cecilia R. Aragon & Lyle A. McGeoch & Catherine Schevon, 1989. "Optimization by Simulated Annealing: An Experimental Evaluation; Part I, Graph Partitioning," Operations Research, INFORMS, vol. 37(6), pages 865-892, December.
    2. Scheuerer, Stephan & Wendolsky, Rolf, 2006. "A scatter search heuristic for the capacitated clustering problem," European Journal of Operational Research, Elsevier, vol. 169(2), pages 533-547, March.
    3. Belarmino Adenso-Díaz & Manuel Laguna, 2006. "Fine-Tuning of Algorithms Using Fractional Experimental Designs and Local Search," Operations Research, INFORMS, vol. 54(1), pages 99-114, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Logan Mathesen & Giulia Pedrielli & Szu Hui Ng & Zelda B. Zabinsky, 2021. "Stochastic optimization with adaptive restart: a framework for integrated local and global learning," Journal of Global Optimization, Springer, vol. 79(1), pages 87-110, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dell'Amico, Mauro & Trubian, Marco, 1998. "Solution of large weighted equicut problems," European Journal of Operational Research, Elsevier, vol. 106(2-3), pages 500-521, April.
    2. Schlereth, Christian & Stepanchuk, Tanja & Skiera, Bernd, 2010. "Optimization and analysis of the profitability of tariff structures with two-part tariffs," European Journal of Operational Research, Elsevier, vol. 206(3), pages 691-701, November.
    3. Orlin, James & Sharma, Dushyant, 2003. "The Extended Neighborhood: Definition And Characterization," Working papers 4392-02, Massachusetts Institute of Technology (MIT), Sloan School of Management.
    4. Melissa Gama & Bruno Filipe Santos & Maria Paola Scaparra, 2016. "A multi-period shelter location-allocation model with evacuation orders for flood disasters," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 4(3), pages 299-323, September.
    5. García-Villoria, Alberto & Corominas, Albert & Nadal, Adrià & Pastor, Rafael, 2018. "Solving the accessibility windows assembly line problem level 1 and variant 1 (AWALBP-L1-1) with precedence constraints," European Journal of Operational Research, Elsevier, vol. 271(3), pages 882-895.
    6. Pirlot, Marc, 1996. "General local search methods," European Journal of Operational Research, Elsevier, vol. 92(3), pages 493-511, August.
    7. M Kumral & P A Dowd, 2005. "A simulated annealing approach to mine production scheduling," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(8), pages 922-930, August.
    8. Chen, Enming & Zhou, Zhongbao & Li, Ruiyang & Chang, Zhongxiang & Shi, Jianmai, 2024. "The multi-fleet delivery problem combined with trucks, tricycles, and drones for last-mile logistics efficiency requirements under multiple budget constraints," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 187(C).
    9. Yiyo Kuo, 2014. "Design method using hybrid of line-type and circular-type routes for transit network system optimization," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(2), pages 600-613, July.
    10. Wang, S. & Huang, G.H., 2015. "A multi-level Taguchi-factorial two-stage stochastic programming approach for characterization of parameter uncertainties and their interactions: An application to water resources management," European Journal of Operational Research, Elsevier, vol. 240(2), pages 572-581.
    11. Gabriel M. Portal & Marcus Ritt & Leonardo M. Borba & Luciana S. Buriol, 2016. "Simulated annealing for the machine reassignment problem," Annals of Operations Research, Springer, vol. 242(1), pages 93-114, July.
    12. Graeme J. Doole & David J. Pannell, 2008. "Optimisation of a Large, Constrained Simulation Model using Compressed Annealing," Journal of Agricultural Economics, Wiley Blackwell, vol. 59(1), pages 188-206, February.
    13. Michele Battistutta & Andrea Schaerf & Tommaso Urli, 2017. "Feature-based tuning of single-stage simulated annealing for examination timetabling," Annals of Operations Research, Springer, vol. 252(2), pages 239-254, May.
    14. Julian Hof & Michael Schneider, 2021. "Intraroute Resource Replenishment with Mobile Depots," Transportation Science, INFORMS, vol. 55(3), pages 660-686, May.
    15. Helena Ramalhinho-Lourenço & Daniel Serra, 1998. "Adaptive approach heuristics for the generalized assignment problem," Economics Working Papers 288, Department of Economics and Business, Universitat Pompeu Fabra.
    16. A. S. Santos & A. M. Madureira & M. L. R. Varela, 2018. "The Influence of Problem Specific Neighborhood Structures in Metaheuristics Performance," Journal of Mathematics, Hindawi, vol. 2018, pages 1-14, July.
    17. Jeffrey W. Ohlmann & Barrett W. Thomas, 2007. "A Compressed-Annealing Heuristic for the Traveling Salesman Problem with Time Windows," INFORMS Journal on Computing, INFORMS, vol. 19(1), pages 80-90, February.
    18. Kaji, Taichi & Ohuchi, Azuma, 1999. "A simulated annealing algorithm with the random compound move for the sequential partitioning problem of directed acyclic graphs," European Journal of Operational Research, Elsevier, vol. 112(1), pages 147-157, January.
    19. Healy, Patrick & Moll, Robert, 1995. "A new extension of local search applied to the Dial-A-Ride Problem," European Journal of Operational Research, Elsevier, vol. 83(1), pages 83-104, May.
    20. Venditti, Luca & Pacciarelli, Dario & Meloni, Carlo, 2010. "A tabu search algorithm for scheduling pharmaceutical packaging operations," European Journal of Operational Research, Elsevier, vol. 202(2), pages 538-546, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joheur:v:25:y:2019:i:1:d:10.1007_s10732-018-9386-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.