IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v252y2017i2d10.1007_s10479-015-2061-8.html
   My bibliography  Save this article

Feature-based tuning of single-stage simulated annealing for examination timetabling

Author

Listed:
  • Michele Battistutta

    (University of Udine)

  • Andrea Schaerf

    (University of Udine)

  • Tommaso Urli

    (NICTA and The Australian National University)

Abstract

We propose a simulated annealing approach for the examination timetabling problem, as formulated in the 2nd International Timetabling Competition. We apply a single-stage procedure in which infeasible solutions are included in the search space and dealt with using suitable penalties. Upon our approach, we perform a statistically-principled experimental analysis, in order to understand the effect of parameter selection on the performance of our algorithm, and to devise a feature-based parameter tuning strategy, which can achieve better generalization on unseen instances with respect to a one-fits-all parameter setting. The outcome of this work is that this rather straightforward search method, if properly tuned, is able to compete with all state-of-the-art specialized solvers on the available instances. As a byproduct of this analysis, we propose and publish a new, larger set of (artificial) instances that could be used for tuning and also as a ground for future comparisons.

Suggested Citation

  • Michele Battistutta & Andrea Schaerf & Tommaso Urli, 2017. "Feature-based tuning of single-stage simulated annealing for examination timetabling," Annals of Operations Research, Springer, vol. 252(2), pages 239-254, May.
  • Handle: RePEc:spr:annopr:v:252:y:2017:i:2:d:10.1007_s10479-015-2061-8
    DOI: 10.1007/s10479-015-2061-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-015-2061-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-015-2061-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. David S. Johnson & Cecilia R. Aragon & Lyle A. McGeoch & Catherine Schevon, 1989. "Optimization by Simulated Annealing: An Experimental Evaluation; Part I, Graph Partitioning," Operations Research, INFORMS, vol. 37(6), pages 865-892, December.
    2. Edmund Burke & Rong Qu & Amr Soghier, 2014. "Adaptive selection of heuristics for improving exam timetables," Annals of Operations Research, Springer, vol. 218(1), pages 129-145, July.
    3. Barry McCollum & Andrea Schaerf & Ben Paechter & Paul McMullan & Rhyd Lewis & Andrew J. Parkes & Luca Di Gaspero & Rong Qu & Edmund K. Burke, 2010. "Setting the Research Agenda in Automated Timetabling: The Second International Timetabling Competition," INFORMS Journal on Computing, INFORMS, vol. 22(1), pages 120-130, February.
    4. Christos Gogos & Panayiotis Alefragis & Efthymios Housos, 2012. "An improved multi-staged algorithmic process for the solution of the examination timetabling problem," Annals of Operations Research, Springer, vol. 194(1), pages 203-221, April.
    5. D. Abramson, 1991. "Constructing School Timetables Using Simulated Annealing: Sequential and Parallel Algorithms," Management Science, INFORMS, vol. 37(1), pages 98-113, January.
    6. Michael W. Carter, 1986. "OR Practice—A Survey of Practical Applications of Examination Timetabling Algorithms," Operations Research, INFORMS, vol. 34(2), pages 193-202, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mats Carlsson & Sara Ceschia & Luca Gaspero & Rasmus Ørnstrup Mikkelsen & Andrea Schaerf & Thomas Jacob Riis Stidsen, 2023. "Exact and metaheuristic methods for a real-world examination timetabling problem," Journal of Scheduling, Springer, vol. 26(4), pages 353-367, August.
    2. Ceschia, Sara & Di Gaspero, Luca & Schaerf, Andrea, 2023. "Educational timetabling: Problems, benchmarks, and state-of-the-art results," European Journal of Operational Research, Elsevier, vol. 308(1), pages 1-18.
    3. Modirkhorasani, Atiyeh & Hoseinpour, Pooya, 2024. "Decentralized exam timetabling: A solution for conducting exams during pandemics," Socio-Economic Planning Sciences, Elsevier, vol. 92(C).
    4. Saeedeh Bazari & Alireza Pooya & Omid Soleimani Fard & Pardis Roozkhosh, 2023. "Modeling and solving the problem of scheduling university exams in terms of new constraints on the conflicts of professors' exams and the concurrence of exams with common questions," OPSEARCH, Springer;Operational Research Society of India, vol. 60(2), pages 877-915, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Johnes, Jill, 2015. "Operational Research in education," European Journal of Operational Research, Elsevier, vol. 243(3), pages 683-696.
    2. Drexl, Andreas & Juretzka, Jan & Salewski, Frank, 1993. "Academic course scheduling under workload and changeover constraints," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 337, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    3. Dimopoulou, M. & Miliotis, P., 2001. "Implementation of a university course and examination timetabling system," European Journal of Operational Research, Elsevier, vol. 130(1), pages 202-213, April.
    4. Mohammed Al-Betar & Ahamad Khader & Iyad Doush, 2014. "Memetic techniques for examination timetabling," Annals of Operations Research, Springer, vol. 218(1), pages 23-50, July.
    5. T. Godwin, 2022. "Obtaining quality business school examination timetable under heterogeneous elective selections through surrogacy," OPSEARCH, Springer;Operational Research Society of India, vol. 59(3), pages 1055-1093, September.
    6. Turabieh, Hamza & Abdullah, Salwani, 2011. "An integrated hybrid approach to the examination timetabling problem," Omega, Elsevier, vol. 39(6), pages 598-607, December.
    7. Michael J. Brusco & Larry W. Jacobs, 1993. "A simulated annealing approach to the cyclic staff‐scheduling problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 40(1), pages 69-84, February.
    8. Taha Arbaoui & Jean-Paul Boufflet & Aziz Moukrim, 2015. "Preprocessing and an improved MIP model for examination timetabling," Annals of Operations Research, Springer, vol. 229(1), pages 19-40, June.
    9. LeBlanc, Larry J. & Shtub, Avraham & Anandalingam, G., 1999. "Formulating and solving production planning problems," European Journal of Operational Research, Elsevier, vol. 112(1), pages 54-80, January.
    10. Urban, Timothy L. & Russell, Robert A., 2003. "Scheduling sports competitions on multiple venues," European Journal of Operational Research, Elsevier, vol. 148(2), pages 302-311, July.
    11. De Boeck, Liesje & Beliën, Jeroen & Creemers, Stefan, 2016. "A column generation approach for solving the examination-timetabling problemAuthor-Name: Woumans, Gert," European Journal of Operational Research, Elsevier, vol. 253(1), pages 178-194.
    12. Edmund Burke & Graham Kendall & Mustafa Mısır & Ender Özcan, 2012. "Monte Carlo hyper-heuristics for examination timetabling," Annals of Operations Research, Springer, vol. 196(1), pages 73-90, July.
    13. Soria-Alcaraz, Jorge A. & Ochoa, Gabriela & Swan, Jerry & Carpio, Martin & Puga, Hector & Burke, Edmund K., 2014. "Effective learning hyper-heuristics for the course timetabling problem," European Journal of Operational Research, Elsevier, vol. 238(1), pages 77-86.
    14. Burke, Edmund K. & Bykov, Yuri, 2017. "The late acceptance Hill-Climbing heuristic," European Journal of Operational Research, Elsevier, vol. 258(1), pages 70-78.
    15. Ahmed Kheiri & Ender Özcan & Andrew J. Parkes, 2016. "A stochastic local search algorithm with adaptive acceptance for high-school timetabling," Annals of Operations Research, Springer, vol. 239(1), pages 135-151, April.
    16. Yuri Bykov & Sanja Petrovic, 2016. "A Step Counting Hill Climbing Algorithm applied to University Examination Timetabling," Journal of Scheduling, Springer, vol. 19(4), pages 479-492, August.
    17. Edmund K. Burke & Yuri Bykov, 2016. "An Adaptive Flex-Deluge Approach to University Exam Timetabling," INFORMS Journal on Computing, INFORMS, vol. 28(4), pages 781-794, November.
    18. Schirmer, Andreas & Potzhar, Kathrin, 2001. "Professional course scheduling in airline transport pilot training: A case from Lufthansa flight training," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 539, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    19. Dell'Amico, Mauro & Trubian, Marco, 1998. "Solution of large weighted equicut problems," European Journal of Operational Research, Elsevier, vol. 106(2-3), pages 500-521, April.
    20. Schlereth, Christian & Stepanchuk, Tanja & Skiera, Bernd, 2010. "Optimization and analysis of the profitability of tariff structures with two-part tariffs," European Journal of Operational Research, Elsevier, vol. 206(3), pages 691-701, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:252:y:2017:i:2:d:10.1007_s10479-015-2061-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.