IDEAS home Printed from https://ideas.repec.org/a/hin/jjmath/8072621.html
   My bibliography  Save this article

The Influence of Problem Specific Neighborhood Structures in Metaheuristics Performance

Author

Listed:
  • A. S. Santos
  • A. M. Madureira
  • M. L. R. Varela

Abstract

Metaheuristics (MH) aptitude to move past local optimums makes them an attractive technique to approach complex computational problems, such as the Travelling Salesman Problem (TSP), but there is lack of information on the parameterization procedure and the appropriate parameters to improve MHs’ performance. In this paper the parameterization procedure of Simulated Annealing (SA) and Discrete Artificial Bee Colony (DABC) is addressed, with a focus on the Neighborhood Structure (NS). Numerous NS have been proposed for specific problems, which seem to indicate that the NS is a special parameter, whose optimization is independent of other parameters. The performance of eight NS was examined with SA and DABC under two optimization constraints, regarding computational time variation, to determine if there is one appropriate NS for the TSP problem, independent of the rest of the parameters of the optimization procedure. The computational study carried out for comparing the evaluation of the NS, including a statistical analysis, demonstrated a nonproportional increase in the performance of DABC with some NS. For SA the improvement of the solutions appeared to be more uniform with an almost nonexistent variance in improvement.

Suggested Citation

  • A. S. Santos & A. M. Madureira & M. L. R. Varela, 2018. "The Influence of Problem Specific Neighborhood Structures in Metaheuristics Performance," Journal of Mathematics, Hindawi, vol. 2018, pages 1-14, July.
  • Handle: RePEc:hin:jjmath:8072621
    DOI: 10.1155/2018/8072621
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/JMATH/2018/8072621.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/JMATH/2018/8072621.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2018/8072621?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Gerhard Reinelt, 1991. "TSPLIB—A Traveling Salesman Problem Library," INFORMS Journal on Computing, INFORMS, vol. 3(4), pages 376-384, November.
    2. Eglese, R. W., 1990. "Simulated annealing: A tool for operational research," European Journal of Operational Research, Elsevier, vol. 46(3), pages 271-281, June.
    3. John Silberholz & Bruce Golden, 2010. "Comparison of Metaheuristics," International Series in Operations Research & Management Science, in: Michel Gendreau & Jean-Yves Potvin (ed.), Handbook of Metaheuristics, chapter 0, pages 625-640, Springer.
    4. G. Dantzig & R. Fulkerson & S. Johnson, 1954. "Solution of a Large-Scale Traveling-Salesman Problem," Operations Research, INFORMS, vol. 2(4), pages 393-410, November.
    5. Fred Glover, 1990. "Tabu Search: A Tutorial," Interfaces, INFORMS, vol. 20(4), pages 74-94, August.
    6. Chen, Yong & Zhang, Pan, 2006. "Optimized annealing of traveling salesman problem from the nth-nearest-neighbor distribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 371(2), pages 627-632.
    7. Laporte, Gilbert, 1992. "The traveling salesman problem: An overview of exact and approximate algorithms," European Journal of Operational Research, Elsevier, vol. 59(2), pages 231-247, June.
    8. G. A. Croes, 1958. "A Method for Solving Traveling-Salesman Problems," Operations Research, INFORMS, vol. 6(6), pages 791-812, December.
    9. John D. C. Little & Katta G. Murty & Dura W. Sweeney & Caroline Karel, 1963. "An Algorithm for the Traveling Salesman Problem," Operations Research, INFORMS, vol. 11(6), pages 972-989, December.
    10. Belarmino Adenso-Díaz & Manuel Laguna, 2006. "Fine-Tuning of Algorithms Using Fractional Experimental Designs and Local Search," Operations Research, INFORMS, vol. 54(1), pages 99-114, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gary R. Waissi & Pragya Kaushal, 2020. "A polynomial matrix processing heuristic algorithm for finding high quality feasible solutions for the TSP," OPSEARCH, Springer;Operational Research Society of India, vol. 57(1), pages 73-87, March.
    2. G Laporte, 2010. "A concise guide to the Traveling Salesman Problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(1), pages 35-40, January.
    3. Sleegers, Joeri & Olij, Richard & van Horn, Gijs & van den Berg, Daan, 2020. "Where the really hard problems aren’t," Operations Research Perspectives, Elsevier, vol. 7(C).
    4. Burger, M. & Su, Z. & De Schutter, B., 2018. "A node current-based 2-index formulation for the fixed-destination multi-depot travelling salesman problem," European Journal of Operational Research, Elsevier, vol. 265(2), pages 463-477.
    5. Bernardino, Raquel & Paias, Ana, 2018. "Solving the family traveling salesman problem," European Journal of Operational Research, Elsevier, vol. 267(2), pages 453-466.
    6. Muren, & Wu, Jianjun & Zhou, Li & Du, Zhiping & Lv, Ying, 2019. "Mixed steepest descent algorithm for the traveling salesman problem and application in air logistics," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 126(C), pages 87-102.
    7. Aardal, K.I. & van Hoesel, S., 1995. "Polyhedral Techniques in Combinatorial Optimization," Other publications TiSEM ed028a07-eb6a-4c8d-8f21-d, Tilburg University, School of Economics and Management.
    8. Sheldon H. Jacobson & Shane N. Hall & Laura A. McLay & Jeffrey E. Orosz, 2005. "Performance Analysis of Cyclical Simulated Annealing Algorithms," Methodology and Computing in Applied Probability, Springer, vol. 7(2), pages 183-201, June.
    9. Lucas García & Pedro M. Talaván & Javier Yáñez, 2022. "The 2-opt behavior of the Hopfield Network applied to the TSP," Operational Research, Springer, vol. 22(2), pages 1127-1155, April.
    10. Xujin Chen & Xiaodong Hu & Xiaohua Jia & Zhongzheng Tang & Chenhao Wang & Ying Zhang, 2021. "Algorithms for the metric ring star problem with fixed edge-cost ratio," Journal of Combinatorial Optimization, Springer, vol. 42(3), pages 499-523, October.
    11. Balma, Ali & Salem, Safa Ben & Mrad, Mehdi & Ladhari, Talel, 2018. "Strong multi-commodity flow formulations for the asymmetric traveling salesman problem," European Journal of Operational Research, Elsevier, vol. 271(1), pages 72-79.
    12. William Cook & Daniel G. Espinoza & Marcos Goycoolea, 2007. "Computing with Domino-Parity Inequalities for the Traveling Salesman Problem (TSP)," INFORMS Journal on Computing, INFORMS, vol. 19(3), pages 356-365, August.
    13. Zang, Xiaoning & Jiang, Li & Liang, Changyong & Fang, Xiang, 2023. "Coordinated home and locker deliveries: An exact approach for the urban delivery problem with conflicting time windows," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 177(C).
    14. Bruce Golden & Zahra Naji-Azimi & S. Raghavan & Majid Salari & Paolo Toth, 2012. "The Generalized Covering Salesman Problem," INFORMS Journal on Computing, INFORMS, vol. 24(4), pages 534-553, November.
    15. Éric Duchenne & Gilbert Laporte & Frédéric Semet, 2007. "The Undirected m -Peripatetic Salesman Problem: Polyhedral Results and New Algorithms," Operations Research, INFORMS, vol. 55(5), pages 949-965, October.
    16. Gianpaolo Ghiani & Gilbert Laporte & Frédéric Semet, 2006. "The Black and White Traveling Salesman Problem," Operations Research, INFORMS, vol. 54(2), pages 366-378, April.
    17. Xujin Chen & Xiaodong Hu & Xiaohua Jia & Zhongzheng Tang & Chenhao Wang & Ying Zhang, 0. "Algorithms for the metric ring star problem with fixed edge-cost ratio," Journal of Combinatorial Optimization, Springer, vol. 0, pages 1-25.
    18. Anirudh Subramanyam & Chrysanthos E. Gounaris, 2018. "A Decomposition Algorithm for the Consistent Traveling Salesman Problem with Vehicle Idling," Transportation Science, INFORMS, vol. 52(2), pages 386-401, March.
    19. Eduardo Batista de Moraes Barbosa & Edson Luiz França Senne, 2017. "Improving the Fine-Tuning of Metaheuristics: An Approach Combining Design of Experiments and Racing Algorithms," Journal of Optimization, Hindawi, vol. 2017, pages 1-7, June.
    20. Chris Walshaw, 2002. "A Multilevel Approach to the Travelling Salesman Problem," Operations Research, INFORMS, vol. 50(5), pages 862-877, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jjmath:8072621. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.