IDEAS home Printed from https://ideas.repec.org/a/spr/jogath/v52y2023i3d10.1007_s00182-023-00843-6.html
   My bibliography  Save this article

Nonatomic game with general preferences over returns

Author

Listed:
  • Jian Yang

    (Business School, Rutgers University)

Abstract

We study nonatomic games in which players’ choices are guided by general preferences. Rather than ones over actions while also under influences of player-action profiles, we let the preferences be over returns received by individual players and let the returns be then linked to all players’ actions. Our modeling choice has rendered otherwise standard analysis quite fruitful. Not only can we establish equilibrium existence results, but we can also derive the upper hemi-continuity of equilibrium-environment sets with respect to the return function and players’ preference profile. Advances concerning pure equilibria can also be made on a framework involving a rich set of players, cruder traits, and an externality midway between semi-anonymity and anonymity.

Suggested Citation

  • Jian Yang, 2023. "Nonatomic game with general preferences over returns," International Journal of Game Theory, Springer;Game Theory Society, vol. 52(3), pages 861-889, September.
  • Handle: RePEc:spr:jogath:v:52:y:2023:i:3:d:10.1007_s00182-023-00843-6
    DOI: 10.1007/s00182-023-00843-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00182-023-00843-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00182-023-00843-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Balder, Erik J., 1999. "On the existence of Cournot-Nash equilibria in continuum games," Journal of Mathematical Economics, Elsevier, vol. 32(2), pages 207-223, October.
    2. Yannelis, Nicholas C. & Prabhakar, N. D., 1983. "Existence of maximal elements and equilibria in linear topological spaces," Journal of Mathematical Economics, Elsevier, vol. 12(3), pages 233-245, December.
    3. Schmeidler, David, 1969. "Competitive Equilibria in Markets with a Continuum of Traders and Incomplete Preferences," Econometrica, Econometric Society, vol. 37(4), pages 578-585, October.
    4. Qiao, Lei & Yu, Haomiao & Zhang, Zhixiang, 2016. "On the closed-graph property of the Nash equilibrium correspondence in a large game: A complete characterization," Games and Economic Behavior, Elsevier, vol. 99(C), pages 89-98.
    5. Shafer, Wayne & Sonnenschein, Hugo, 1975. "Equilibrium in abstract economies without ordered preferences," Journal of Mathematical Economics, Elsevier, vol. 2(3), pages 345-348, December.
    6. Khan, M. Ali & Rath, Kali P. & Sun, Yeneng, 1997. "On the Existence of Pure Strategy Equilibria in Games with a Continuum of Players," Journal of Economic Theory, Elsevier, vol. 76(1), pages 13-46, September.
    7. Khan, M. Ali & Rath, Kali P. & Sun, Yeneng & Yu, Haomiao, 2013. "Large games with a bio-social typology," Journal of Economic Theory, Elsevier, vol. 148(3), pages 1122-1149.
    8. Khan, M. Ali & Rath, Kali P. & Yu, Haomiao & Zhang, Yongchao, 2013. "Large distributional games with traits," Economics Letters, Elsevier, vol. 118(3), pages 502-505.
    9. Rath, Kali P, 1992. "A Direct Proof of the Existence of Pure Strategy Equilibria in Games with a Continuum of Players," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 2(3), pages 427-433, July.
    10. Khan, M. Ali & Vohra, Rajiv, 1984. "Equilibrium in abstract economies without ordered preferences and with a measure space of agents," Journal of Mathematical Economics, Elsevier, vol. 13(2), pages 133-142, October.
    11. Yang, Jian, 2018. "Game-theoretic modeling of players’ ambiguities on external factors," Journal of Mathematical Economics, Elsevier, vol. 75(C), pages 31-56.
    12. Borglin, Anders & Keiding, Hans, 1976. "Existence of equilibrium actions and of equilibrium : A note on the `new' existence theorems," Journal of Mathematical Economics, Elsevier, vol. 3(3), pages 313-316, December.
    13. Filipe Martins-da-Rocha, V. & Topuzu, Mihaela, 2008. "Cournot-Nash equilibria in continuum games with non-ordered preferences," Journal of Economic Theory, Elsevier, vol. 140(1), pages 314-327, May.
    14. Balder, Erik J., 2002. "A Unifying Pair of Cournot-Nash Equilibrium Existence Results," Journal of Economic Theory, Elsevier, vol. 102(2), pages 437-470, February.
    15. Konrad Podczeck, 2009. "On purification of measure-valued maps," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 38(2), pages 399-418, February.
    16. Balder, Erik J., 2000. "Incompatibility of Usual Conditions for Equilibrium Existence in Continuum Economies without Ordered Preferences," Journal of Economic Theory, Elsevier, vol. 93(1), pages 110-117, July.
    17. Yannelis, Nicholas C., 1987. "Equilibria in noncooperative models of competition," Journal of Economic Theory, Elsevier, vol. 41(1), pages 96-111, February.
    18. SCHMEIDLER, David, 1973. "Equilibrium points of nonatomic games," LIDAM Reprints CORE 146, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    19. Balder, Erik J, 1995. "A Unifying Approach to Existence of Nash Equilibrium," International Journal of Game Theory, Springer;Game Theory Society, vol. 24(1), pages 79-94.
    20. Mas-Colell, Andrew, 1974. "An equilibrium existence theorem without complete or transitive preferences," Journal of Mathematical Economics, Elsevier, vol. 1(3), pages 237-246, December.
    21. Yang, Jian, 2011. "Asymptotic interpretations for equilibria of nonatomic games," Journal of Mathematical Economics, Elsevier, vol. 47(4-5), pages 491-499.
    22. repec:dau:papers:123456789/6544 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Filipe Martins-da-Rocha, V. & Topuzu, Mihaela, 2008. "Cournot-Nash equilibria in continuum games with non-ordered preferences," Journal of Economic Theory, Elsevier, vol. 140(1), pages 314-327, May.
    2. Barelli, Paulo & Duggan, John, 2015. "Extremal choice equilibrium with applications to large games, stochastic games, & endogenous institutions," Journal of Economic Theory, Elsevier, vol. 155(C), pages 95-130.
    3. Yang, Jian, 2022. "A Bayesian nonatomic game and its applicability to finite-player situations," Journal of Mathematical Economics, Elsevier, vol. 102(C).
    4. Balder, Erik J., 2008. "More on equilibria in competitive markets with externalities and a continuum of agents," Journal of Mathematical Economics, Elsevier, vol. 44(7-8), pages 575-602, July.
    5. Carmona, Guilherme & Podczeck, Konrad, 2014. "Existence of Nash equilibrium in games with a measure space of players and discontinuous payoff functions," Journal of Economic Theory, Elsevier, vol. 152(C), pages 130-178.
    6. M. Ali Khan & Metin Uyanik, 2021. "The Yannelis–Prabhakar theorem on upper semi-continuous selections in paracompact spaces: extensions and applications," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 71(3), pages 799-840, April.
    7. Basci, Erdem & Sertel, Murat R., 1996. "Prakash and Sertel's theory of non-cooperative equilibria in social systems -- twenty years later," Journal of Mathematical Economics, Elsevier, vol. 25(1), pages 1-18.
    8. Jian Yang, 2021. "Analysis of Markovian Competitive Situations Using Nonatomic Games," Dynamic Games and Applications, Springer, vol. 11(1), pages 184-216, March.
    9. Balder, Erik J., 2000. "Incompatibility of Usual Conditions for Equilibrium Existence in Continuum Economies without Ordered Preferences," Journal of Economic Theory, Elsevier, vol. 93(1), pages 110-117, July.
    10. Gerasímou, Georgios, 2010. "Consumer theory with bounded rational preferences," Journal of Mathematical Economics, Elsevier, vol. 46(5), pages 708-714, September.
    11. Paulo Barelli & John Duggan, 2011. "Extremal Choice Equilibrium: Existence and Purification with Infinite-Dimensional Externalities," RCER Working Papers 567, University of Rochester - Center for Economic Research (RCER).
    12. Bernard Cornet & Mihaela Topuzu, 2005. "Existence of equilibria for economies with externalities and a measure space of consumers," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 26(2), pages 397-421, August.
    13. Tian, Guoqiang & Zhou, Jianxin, 1995. "Transfer continuities, generalizations of the Weierstrass and maximum theorems: A full characterization," Journal of Mathematical Economics, Elsevier, vol. 24(3), pages 281-303.
    14. Askoura, Y., 2017. "On the core of normal form games with a continuum of players," Mathematical Social Sciences, Elsevier, vol. 89(C), pages 32-42.
    15. Youcef Askoura, 2019. "On the core of normal form games with a continuum of players : a correction," Papers 1903.09819, arXiv.org.
    16. Wei He & Yeneng Sun, 2018. "Conditional expectation of correspondences and economic applications," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 66(2), pages 265-299, August.
    17. Balder, Erik J., 2002. "A Unifying Pair of Cournot-Nash Equilibrium Existence Results," Journal of Economic Theory, Elsevier, vol. 102(2), pages 437-470, February.
    18. Wei He & Nicholas C. Yannelis, 2016. "Existence of Walrasian equilibria with discontinuous, non-ordered, interdependent and price-dependent preferences," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 61(3), pages 497-513, March.
    19. Jian Yang, 2017. "A link between sequential semi-anonymous nonatomic games and their large finite counterparts," International Journal of Game Theory, Springer;Game Theory Society, vol. 46(2), pages 383-433, May.
    20. Khan, M. Ali & McLean, Richard P. & Uyanik, Metin, 2024. "On constrained generalized games with action sets in non-locally-convex and non-Hausdorff topological vector spaces," Journal of Mathematical Economics, Elsevier, vol. 111(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jogath:v:52:y:2023:i:3:d:10.1007_s00182-023-00843-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.