IDEAS home Printed from https://ideas.repec.org/a/spr/jogath/v45y2016i1d10.1007_s00182-015-0510-x.html
   My bibliography  Save this article

On the dispensable role of time in games of perfect information

Author

Listed:
  • Dov Samet

    (Tel Aviv University)

Abstract

In Aumann (Games Econ Behav 8(1):6–19, 1995, Games Econ Behav 23(1):97–105, 1998), time is assumed implicitly in the description of games of perfect information, and it is part of the epistemic distinction between ex-ante and ex-post knowledge. We show that ex-post knowledge in these papers can be expressed by ex-ante knowledge and therefore epistemically, time is irrelevant to the analysis. Furthermore, we show that material rationality by weak dominance and by expectation can be expressed in terms of the timeless strategic form of the game.

Suggested Citation

  • Dov Samet, 2016. "On the dispensable role of time in games of perfect information," International Journal of Game Theory, Springer;Game Theory Society, vol. 45(1), pages 375-387, March.
  • Handle: RePEc:spr:jogath:v:45:y:2016:i:1:d:10.1007_s00182-015-0510-x
    DOI: 10.1007/s00182-015-0510-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00182-015-0510-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00182-015-0510-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Elmes Susan & Reny Philip J., 1994. "On the Strategic Equivalence of Extensive Form Games," Journal of Economic Theory, Elsevier, vol. 62(1), pages 1-23, February.
    2. Aumann, Robert J, 1987. "Correlated Equilibrium as an Expression of Bayesian Rationality," Econometrica, Econometric Society, vol. 55(1), pages 1-18, January.
    3. Kohlberg, Elon & Mertens, Jean-Francois, 1986. "On the Strategic Stability of Equilibria," Econometrica, Econometric Society, vol. 54(5), pages 1003-1037, September.
    4. Aumann, Robert J., 1995. "Backward induction and common knowledge of rationality," Games and Economic Behavior, Elsevier, vol. 8(1), pages 6-19.
    5. Aumann, Robert J., 1998. "On the Centipede Game," Games and Economic Behavior, Elsevier, vol. 23(1), pages 97-105, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dekel, Eddie & Siniscalchi, Marciano, 2015. "Epistemic Game Theory," Handbook of Game Theory with Economic Applications,, Elsevier.
    2. Hillas, John & Samet, Dov, 2022. "Non-Bayesian correlated equilibrium as an expression of non-Bayesian rationality," Games and Economic Behavior, Elsevier, vol. 135(C), pages 1-15.
    3. Bonanno, Giacomo, 2014. "A doxastic behavioral characterization of generalized backward induction," Games and Economic Behavior, Elsevier, vol. 88(C), pages 221-241.
    4. Hillas, John & Samet, Dov, 2020. "Dominance rationality: A unified approach," Games and Economic Behavior, Elsevier, vol. 119(C), pages 189-196.
    5. Xiao Luo & Ben Wang, 2022. "An epistemic characterization of MACA," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 73(4), pages 995-1024, June.
    6. Christian Bach & Jérémie Cabessa, 2012. "Common knowledge and limit knowledge," Theory and Decision, Springer, vol. 73(3), pages 423-440, September.
    7. Feinberg, Yossi, 2005. "Subjective reasoning--dynamic games," Games and Economic Behavior, Elsevier, vol. 52(1), pages 54-93, July.
    8. Battigalli, Pierpaolo & Bonanno, Giacomo, 1999. "Recent results on belief, knowledge and the epistemic foundations of game theory," Research in Economics, Elsevier, vol. 53(2), pages 149-225, June.
    9. John Hillas & Elon Kohlberg, 1996. "Foundations of Strategic Equilibrium," Game Theory and Information 9606002, University Library of Munich, Germany, revised 18 Sep 1996.
    10. Battigalli, Pierpaolo & Siniscalchi, Marciano, 1999. "Interactive beliefs, epistemic independence and strong rationalizability," Research in Economics, Elsevier, vol. 53(3), pages 247-273, September.
    11. Rapoport, Amnon & Stein, William E. & Parco, James E. & Nicholas, Thomas E., 2003. "Equilibrium play and adaptive learning in a three-person centipede game," Games and Economic Behavior, Elsevier, vol. 43(2), pages 239-265, May.
    12. Adam Brandenburger & Amanda Friedenberg, 2014. "Self-Admissible Sets," World Scientific Book Chapters, in: The Language of Game Theory Putting Epistemics into the Mathematics of Games, chapter 8, pages 213-249, World Scientific Publishing Co. Pte. Ltd..
    13. Giacomo Bonanno, 2021. "Rational play in games: A behavioral approach," Working Papers 344, University of California, Davis, Department of Economics.
    14. Asheim, G.B. & Dufwenberg, M., 1996. "Admissibility and Common Knowledge," Discussion Paper 1996-16, Tilburg University, Center for Economic Research.
    15. Casajus, Andre, 2003. "Weak isomorphism of extensive games," Mathematical Social Sciences, Elsevier, vol. 46(3), pages 267-290, December.
    16. Amanda Friedenberg, 2006. "Can Hidden Variables Explain Correlation? (joint with Adam Brandenburger)," Theory workshop papers 815595000000000005, UCLA Department of Economics.
    17. Carlos Alós-Ferrer & Klaus Ritzberger, 2020. "Reduced normal forms are not extensive forms," Economic Theory Bulletin, Springer;Society for the Advancement of Economic Theory (SAET), vol. 8(2), pages 281-288, October.
    18. Fudenberg, Drew & Kreps, David M., 1995. "Learning in extensive-form games I. Self-confirming equilibria," Games and Economic Behavior, Elsevier, vol. 8(1), pages 20-55.
    19. Atsushi Kajii & Stephen Morris, 2020. "Refinements and higher-order beliefs: a unified survey," The Japanese Economic Review, Springer, vol. 71(1), pages 7-34, January.
    20. Adam Brandenburger & Amanda Friedenberg, 2014. "Intrinsic Correlation in Games," World Scientific Book Chapters, in: The Language of Game Theory Putting Epistemics into the Mathematics of Games, chapter 4, pages 59-111, World Scientific Publishing Co. Pte. Ltd..

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jogath:v:45:y:2016:i:1:d:10.1007_s00182-015-0510-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.