IDEAS home Printed from https://ideas.repec.org/a/eee/gamebe/v8y1995i1p6-19.html
   My bibliography  Save this article

Backward induction and common knowledge of rationality

Author

Listed:
  • Aumann, Robert J.

Abstract

We formulate precisely and prove the proposition that if common knowledge of rationality obtains in a game of perfect information, then the backward induction outcome is reached. Journal of Economic Literatur Classification Numbers: C72 D81.

Suggested Citation

  • Aumann, Robert J., 1995. "Backward induction and common knowledge of rationality," Games and Economic Behavior, Elsevier, vol. 8(1), pages 6-19.
  • Handle: RePEc:eee:gamebe:v:8:y:1995:i:1:p:6-19
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0899825605800156
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Robert Aumann & Adam Brandenburger, 2014. "Epistemic Conditions for Nash Equilibrium," World Scientific Book Chapters, in: The Language of Game Theory Putting Epistemics into the Mathematics of Games, chapter 5, pages 113-136, World Scientific Publishing Co. Pte. Ltd..
    2. Bonanno, Giacomo, 1991. "The Logic of Rational Play in Games of Perfect Information," Economics and Philosophy, Cambridge University Press, vol. 7(1), pages 37-65, April.
    3. Tan, Tommy Chin-Chiu & da Costa Werlang, Sergio Ribeiro, 1988. "The Bayesian foundations of solution concepts of games," Journal of Economic Theory, Elsevier, vol. 45(2), pages 370-391, August.
    4. Samet, Dov, 1996. "Hypothetical Knowledge and Games with Perfect Information," Games and Economic Behavior, Elsevier, vol. 17(2), pages 230-251, December.
    5. Aumann, Robert J, 1987. "Correlated Equilibrium as an Expression of Bayesian Rationality," Econometrica, Econometric Society, vol. 55(1), pages 1-18, January.
    6. Partha Dasgupta & Douglas Gale & Oliver Hart & Eric Maskin (ed.), 1992. "Economic Analysis of Markets and Games: Essays in Honor of Frank Hahn," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262541599, April.
    7. Philip J. Reny, 1992. "Rationality in Extensive-Form Games," Journal of Economic Perspectives, American Economic Association, vol. 6(4), pages 103-118, Fall.
    8. Basu, Kaushik, 1990. "On the Non-existence of a Rationality Definition for Extensive Games," International Journal of Game Theory, Springer;Game Theory Society, vol. 19(1), pages 33-44.
    9. Ben-Porath, Elchanan, 1992. "Rationality, Nash Equilibrium and Backward Induction in Perfect Information Games," Foerder Institute for Economic Research Working Papers 275567, Tel-Aviv University > Foerder Institute for Economic Research.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiao Luo & Ben Wang, 2022. "An epistemic characterization of MACA," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 73(4), pages 995-1024, June.
    2. Asheim, Geir B., 2002. "On the epistemic foundation for backward induction," Mathematical Social Sciences, Elsevier, vol. 44(2), pages 121-144, November.
    3. Feinberg, Yossi, 2005. "Subjective reasoning--dynamic games," Games and Economic Behavior, Elsevier, vol. 52(1), pages 54-93, July.
    4. Perea Andrés, 2003. "Rationalizability and Minimal Complexity in Dynamic Games," Research Memorandum 047, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
    5. Stuart, Harborne Jr., 1997. "Common Belief of Rationality in the Finitely Repeated Prisoners' Dilemma," Games and Economic Behavior, Elsevier, vol. 19(1), pages 133-143, April.
    6. Dekel, Eddie & Siniscalchi, Marciano, 2015. "Epistemic Game Theory," Handbook of Game Theory with Economic Applications,, Elsevier.
    7. Ken Binmore, "undated". "Rationality and Backward Induction," ELSE working papers 047, ESRC Centre on Economics Learning and Social Evolution.
    8. Graciela Kuechle, 2009. "What Happened To The Three‐Legged Centipede Game?," Journal of Economic Surveys, Wiley Blackwell, vol. 23(3), pages 562-585, July.
    9. Vitaly Pruzhansky, 2004. "A Discussion of Maximin," Tinbergen Institute Discussion Papers 04-028/1, Tinbergen Institute.
    10. Asheim, G.B. & Dufwenberg, M., 1996. "Admissibility and Common Knowledge," Other publications TiSEM 54bb4094-d109-48b9-8b45-a, Tilburg University, School of Economics and Management.
    11. Michael Trost, 2013. "Epistemic characterizations of iterated deletion of inferior strategy profiles in preference-based type spaces," International Journal of Game Theory, Springer;Game Theory Society, vol. 42(3), pages 755-776, August.
    12. Abhijit Banerjee & Jörgen W. Weibull & Ken Binmore, 1996. "Evolution and Rationality: Some Recent Game-Theoretic Results," International Economic Association Series, in: Beth Allen (ed.), Economics in a Changing World, chapter 4, pages 90-117, Palgrave Macmillan.
    13. Giacomo Bonanno, 2008. "Non-cooperative game theory," Working Papers 86, University of California, Davis, Department of Economics.
    14. Tsakas, Elias, 2014. "Epistemic equivalence of extended belief hierarchies," Games and Economic Behavior, Elsevier, vol. 86(C), pages 126-144.
    15. Cyril Hédoin, 2016. "Community-Based Reasoning in Games: Salience, Rule-Following, and Counterfactuals," Games, MDPI, vol. 7(4), pages 1-17, November.
    16. Joseph Y. Halpern & Rafael Pass, 2018. "Game theory with translucent players," International Journal of Game Theory, Springer;Game Theory Society, vol. 47(3), pages 949-976, September.
    17. Reny, Philip J. & Robson, Arthur J., 2004. "Reinterpreting mixed strategy equilibria: a unification of the classical and Bayesian views," Games and Economic Behavior, Elsevier, vol. 48(2), pages 355-384, August.
    18. Guilhem Lecouteux, 2018. "Bayesian game theorists and non-Bayesian players," The European Journal of the History of Economic Thought, Taylor & Francis Journals, vol. 25(6), pages 1420-1454, November.
    19. Koji Takamiya & Akira Tanaka, 2006. "Mutual Knowledge of Rationality in the Electronic Mail Game," ISER Discussion Paper 0650, Institute of Social and Economic Research, Osaka University.
    20. Christian Bach & Jérémie Cabessa, 2012. "Common knowledge and limit knowledge," Theory and Decision, Springer, vol. 73(3), pages 423-440, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:gamebe:v:8:y:1995:i:1:p:6-19. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/622836 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.