IDEAS home Printed from https://ideas.repec.org/a/spr/joecth/v72y2021i2d10.1007_s00199-020-01275-z.html
   My bibliography  Save this article

Iterated dominance revisited

Author

Listed:
  • Amanda Friedenberg

    (University of Arizona)

  • H. Jerome Keisler

    (University of Wisconsin-Madison)

Abstract

Epistemic justifications of solution concepts often refer to type structures that are sufficiently rich. One important notion of richness is that of a complete type structure, i.e., a type structure that induces all possible beliefs about types. For instance, it is often said that, in a complete type structure, the set of strategies consistent with rationality and common belief of rationality are the set of strategies that survive iterated dominance. This paper shows that this classic result is false, absent certain topological conditions on the type structure. In particular, it provides an example of a finite game and a complete type structure in which there is no state consistent with rationality and common belief of rationality. This arises because the complete type structure does not induce all hierarchies of beliefs—despite inducing all beliefs about types. This raises the question: Which beliefs does a complete type structure induce? We provide several positive results that speak to that question. However, we also show that, within ZFC, one cannot show that a complete structure induces all second-order beliefs.

Suggested Citation

  • Amanda Friedenberg & H. Jerome Keisler, 2021. "Iterated dominance revisited," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 72(2), pages 377-421, September.
  • Handle: RePEc:spr:joecth:v:72:y:2021:i:2:d:10.1007_s00199-020-01275-z
    DOI: 10.1007/s00199-020-01275-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00199-020-01275-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00199-020-01275-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Heifetz, Aviad & Samet, Dov, 1998. "Topology-Free Typology of Beliefs," Journal of Economic Theory, Elsevier, vol. 82(2), pages 324-341, October.
    2. , & ,, 2012. "Forward induction reasoning revisited," Theoretical Economics, Econometric Society, vol. 7(1), January.
    3. Heifetz, Aviad & Samet, Dov, 1999. "Coherent beliefs are not always types," Journal of Mathematical Economics, Elsevier, vol. 32(4), pages 475-488, December.
    4. Friedenberg, Amanda, 2010. "When do type structures contain all hierarchies of beliefs?," Games and Economic Behavior, Elsevier, vol. 68(1), pages 108-129, January.
    5. Adam Brandenburger & Eddie Dekel, 2014. "Hierarchies of Beliefs and Common Knowledge," World Scientific Book Chapters, in: The Language of Game Theory Putting Epistemics into the Mathematics of Games, chapter 2, pages 31-41, World Scientific Publishing Co. Pte. Ltd..
    6. Martin Dufwenberg & Mark Stegeman, 2002. "Existence and Uniqueness of Maximal Reductions Under Iterated Strict Dominance," Econometrica, Econometric Society, vol. 70(5), pages 2007-2023, September.
    7. Keisler, H. Jerome & Lee, Byung Soo, 2011. "Common assumption of rationality," MPRA Paper 34441, University Library of Munich, Germany.
    8. Robert Aumann & Adam Brandenburger, 2014. "Epistemic Conditions for Nash Equilibrium," World Scientific Book Chapters, in: The Language of Game Theory Putting Epistemics into the Mathematics of Games, chapter 5, pages 113-136, World Scientific Publishing Co. Pte. Ltd..
    9. Marx, Leslie M. & Swinkels, Jeroen M., 2000. "Order Independence for Iterated Weak Dominance," Games and Economic Behavior, Elsevier, vol. 31(2), pages 324-329, May.
    10. Tan, Tommy Chin-Chiu & da Costa Werlang, Sergio Ribeiro, 1988. "The Bayesian foundations of solution concepts of games," Journal of Economic Theory, Elsevier, vol. 45(2), pages 370-391, August.
    11. MERTENS, Jean-François & ZAMIR, Shmuel, 1985. "Formulation of Bayesian analysis for games with incomplete information," LIDAM Reprints CORE 608, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    12. Adam Brandenburger & Eddie Dekel, 2014. "Rationalizability and Correlated Equilibria," World Scientific Book Chapters, in: The Language of Game Theory Putting Epistemics into the Mathematics of Games, chapter 3, pages 43-57, World Scientific Publishing Co. Pte. Ltd..
    13. Amanda Friedenberg & Martin Meier, 2011. "On the relationship between hierarchy and type morphisms," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 46(3), pages 377-399, April.
    14. Bernheim, B Douglas, 1984. "Rationalizable Strategic Behavior," Econometrica, Econometric Society, vol. 52(4), pages 1007-1028, July.
    15. Rubinstein, Ariel, 1989. "The Electronic Mail Game: Strategic Behavior under "Almost Common Knowledge."," American Economic Review, American Economic Association, vol. 79(3), pages 385-391, June.
    16. Adam Brandenburger & Amanda Friedenberg & H. Jerome Keisler, 2014. "Admissibility in Games," World Scientific Book Chapters, in: The Language of Game Theory Putting Epistemics into the Mathematics of Games, chapter 7, pages 161-212, World Scientific Publishing Co. Pte. Ltd..
    17. Lee, Byung Soo, 2016. "Admissibility and assumption," Journal of Economic Theory, Elsevier, vol. 163(C), pages 42-72.
    18. Atsushi Kajii & Stephen Morris, 1997. "The Robustness of Equilibria to Incomplete Information," Econometrica, Econometric Society, vol. 65(6), pages 1283-1310, November.
    19. Pearce, David G, 1984. "Rationalizable Strategic Behavior and the Problem of Perfection," Econometrica, Econometric Society, vol. 52(4), pages 1029-1050, July.
    20. Adam Brandenburger & Amanda Friedenberg, 2014. "Intrinsic Correlation in Games," World Scientific Book Chapters, in: The Language of Game Theory Putting Epistemics into the Mathematics of Games, chapter 4, pages 59-111, World Scientific Publishing Co. Pte. Ltd..
    21. John C. Harsanyi, 1967. "Games with Incomplete Information Played by "Bayesian" Players, I-III Part I. The Basic Model," Management Science, INFORMS, vol. 14(3), pages 159-182, November.
    22. Battigalli, Pierpaolo & Siniscalchi, Marciano, 2002. "Strong Belief and Forward Induction Reasoning," Journal of Economic Theory, Elsevier, vol. 106(2), pages 356-391, October.
    23. Arieli, Itai, 2010. "Rationalizability in continuous games," Journal of Mathematical Economics, Elsevier, vol. 46(5), pages 912-924, September.
    24. Yildiz, Muhamet, 2015. "Invariance to representation of information," Games and Economic Behavior, Elsevier, vol. 94(C), pages 142-156.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fukuda, Satoshi, 2024. "The existence of universal qualitative belief spaces," Journal of Economic Theory, Elsevier, vol. 216(C).
    2. Nicodemo De Vito, 2023. "Complete Conditional Type Structures (Extended Abstract)," Papers 2307.05630, arXiv.org.
    3. Catonini, Emiliano & De Vito, Nicodemo, 2024. "Cautious belief and iterated admissibility," Journal of Mathematical Economics, Elsevier, vol. 110(C).
    4. Guarino, Pierfrancesco & Ziegler, Gabriel, 2022. "Optimism and pessimism in strategic interactions under ignorance," Games and Economic Behavior, Elsevier, vol. 136(C), pages 559-585.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dekel, Eddie & Siniscalchi, Marciano, 2015. "Epistemic Game Theory," Handbook of Game Theory with Economic Applications,, Elsevier.
    2. Tsakas, Elias, 2014. "Epistemic equivalence of extended belief hierarchies," Games and Economic Behavior, Elsevier, vol. 86(C), pages 126-144.
    3. Fukuda, Satoshi, 2024. "The existence of universal qualitative belief spaces," Journal of Economic Theory, Elsevier, vol. 216(C).
    4. Ziegler, Gabriel & Zuazo-Garin, Peio, 2020. "Strategic cautiousness as an expression of robustness to ambiguity," Games and Economic Behavior, Elsevier, vol. 119(C), pages 197-215.
    5. Yi-Chun Chen & Xiao Luo & Chen Qu, 2016. "Rationalizability in general situations," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 61(1), pages 147-167, January.
    6. Andrés Perea & Willemien Kets, 2016. "When Do Types Induce the Same Belief Hierarchy?," Games, MDPI, vol. 7(4), pages 1-17, October.
    7. Guarino, Pierfrancesco, 2020. "An epistemic analysis of dynamic games with unawareness," Games and Economic Behavior, Elsevier, vol. 120(C), pages 257-288.
    8. Perea, Andrés, 2017. "Forward induction reasoning and correct beliefs," Journal of Economic Theory, Elsevier, vol. 169(C), pages 489-516.
    9. Jonathan Weinstein & Muhamet Yildiz, 2004. "Finite-Order Implications of Any Equilibrium," Levine's Working Paper Archive 122247000000000065, David K. Levine.
    10. Jagau, Stephan & Perea, Andrés, 2022. "Common belief in rationality in psychological games," Journal of Mathematical Economics, Elsevier, vol. 100(C).
    11. , & , & ,, 2007. "Interim correlated rationalizability," Theoretical Economics, Econometric Society, vol. 2(1), pages 15-40, March.
    12. Guilhem Lecouteux, 2018. "Bayesian game theorists and non-Bayesian players," The European Journal of the History of Economic Thought, Taylor & Francis Journals, vol. 25(6), pages 1420-1454, November.
    13. Pierpaolo Battigalli & Pietro Tebaldi, 2019. "Interactive epistemology in simple dynamic games with a continuum of strategies," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 68(3), pages 737-763, October.
    14. Xiao Luo & Yi-Chun Chen, 2004. "A Unified Approach to Information, Knowledge, and Stability," Econometric Society 2004 Far Eastern Meetings 472, Econometric Society.
    15. Willemien Kets, 2012. "Bounded Reasoning and Higher-Order Uncertainty," Discussion Papers 1547, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
    16. Weinstein, Jonathan & Yildiz, Muhamet, 2017. "Interim correlated rationalizability in infinite games," Journal of Mathematical Economics, Elsevier, vol. 72(C), pages 82-87.
    17. Catonini, Emiliano & De Vito, Nicodemo, 2024. "Cautious belief and iterated admissibility," Journal of Mathematical Economics, Elsevier, vol. 110(C).
    18. Pintér, Miklós & Udvari, Zsolt, 2011. "Generalized type spaces," MPRA Paper 34107, University Library of Munich, Germany.
    19. Amanda Friedenberg, 2006. "Can Hidden Variables Explain Correlation? (joint with Adam Brandenburger)," Theory workshop papers 815595000000000005, UCLA Department of Economics.
    20. Geir B. Asheim & Mark Voorneveld & Jörgen W. Weibull, 2016. "Epistemically Robust Strategy Subsets," Games, MDPI, vol. 7(4), pages 1-16, November.

    More about this item

    Keywords

    Iterated dominance; Rationalizability; Rationality and common belief of rationality; Type structures; Epistemic game theory;
    All these keywords.

    JEL classification:

    • C70 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - General
    • C72 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Noncooperative Games
    • C79 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Other
    • D81 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Criteria for Decision-Making under Risk and Uncertainty
    • D89 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Other

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joecth:v:72:y:2021:i:2:d:10.1007_s00199-020-01275-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.