IDEAS home Printed from https://ideas.repec.org/a/taf/lstaxx/v49y2020i20p4988-4995.html
   My bibliography  Save this article

Generalized value at risk forecasting

Author

Listed:
  • Aerambamoorthy Thavaneswaran
  • Alex Paseka
  • Julieta Frank

Abstract

In this paper, using estimating function approach, a new optimal volatility estimator is introduced and based on the recursive form of the estimator a data-driven generalized EWMA model for value at risk (VaR) forecast is proposed. An appropriate data-driven model for volatility is identified by the relationship between absolute deviation and standard deviation for symmetric distributions with finite variance. It is shown that the asymptotic variance of the proposed volatility estimator is smaller than that of conventional estimators and is more appropriate for financial data with larger kurtosis. For IBM, Microsoft, Apple stocks and SP 500 index the proposed method is used to identify the model, estimate the volatility, and obtain minimum mean square error(MMSE) forecasts of VaR.

Suggested Citation

  • Aerambamoorthy Thavaneswaran & Alex Paseka & Julieta Frank, 2020. "Generalized value at risk forecasting," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 49(20), pages 4988-4995, October.
  • Handle: RePEc:taf:lstaxx:v:49:y:2020:i:20:p:4988-4995
    DOI: 10.1080/03610926.2019.1610443
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/03610926.2019.1610443
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/03610926.2019.1610443?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sulalitha Bowala & Japjeet Singh, 2022. "Optimizing Portfolio Risk of Cryptocurrencies Using Data-Driven Risk Measures," JRFM, MDPI, vol. 15(10), pages 1-16, September.
    2. Shafiqah Azman & Dharini Pathmanathan & Aerambamoorthy Thavaneswaran, 2022. "Forecasting the Volatility of Cryptocurrencies in the Presence of COVID-19 with the State Space Model and Kalman Filter," Mathematics, MDPI, vol. 10(17), pages 1-15, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:lstaxx:v:49:y:2020:i:20:p:4988-4995. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/lsta .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.