IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v104y2000i2d10.1023_a1004657629105.html
   My bibliography  Save this article

Outcome-Space Cutting-Plane Algorithm for Linear Multiplicative Programming

Author

Listed:
  • H. P. Benson

    (University of Florida)

  • G. M. Boger

    (University of Florida)

Abstract

This article presents an outcome-space pure cutting-plane algorithm for globally solving the linear multiplicative programming problem. The framework of the algorithm is taken from a pure cutting-plane decision set-based method developed by Horst and Tuy for solving concave minimization problems. By adapting this method to an outcome-space reformulation of the linear multiplicative programming problem, rather than applying directly the method to the original decision-set formulation, it is expected that considerable computational savings can be obtained. Also, we show how additional computational benefits might be obtained by implementing the new algorithm appropriately. To illustrate the new algorithm, we apply it to the solution of a sample problem.

Suggested Citation

  • H. P. Benson & G. M. Boger, 2000. "Outcome-Space Cutting-Plane Algorithm for Linear Multiplicative Programming," Journal of Optimization Theory and Applications, Springer, vol. 104(2), pages 301-322, February.
  • Handle: RePEc:spr:joptap:v:104:y:2000:i:2:d:10.1023_a:1004657629105
    DOI: 10.1023/A:1004657629105
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1023/A:1004657629105
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1023/A:1004657629105?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. H. P. Benson & G. M. Boger, 1997. "Multiplicative Programming Problems: Analysis and Efficient Point Search Heuristic," Journal of Optimization Theory and Applications, Springer, vol. 94(2), pages 487-510, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Daniele Depetrini & Marco Locatelli, 2009. "A FPTAS for a class of linear multiplicative problems," Computational Optimization and Applications, Springer, vol. 44(2), pages 275-288, November.
    2. Hongwei Jiao & Binbin Li & Wenqiang Yang, 2024. "A criterion-space branch-reduction-bound algorithm for solving generalized multiplicative problems," Journal of Global Optimization, Springer, vol. 89(3), pages 597-632, July.
    3. Mustapha El Moudden & Ahmed El Ghali, 2018. "A new reduced gradient method for solving linearly constrained multiobjective optimization problems," Computational Optimization and Applications, Springer, vol. 71(3), pages 719-741, December.
    4. Yunchol Jong & Yongjin Kim & Hyonchol Kim, 2024. "A method based on parametric convex programming for solving convex multiplicative programming problem," Journal of Global Optimization, Springer, vol. 90(3), pages 573-592, November.
    5. Boddiford, Ashley N. & Kaufman, Daniel E. & Skipper, Daphne E. & Uhan, Nelson A., 2023. "Approximating a linear multiplicative objective in watershed management optimization," European Journal of Operational Research, Elsevier, vol. 305(2), pages 547-561.
    6. Peiping Shen & Kaimin Wang & Ting Lu, 2020. "Outer space branch and bound algorithm for solving linear multiplicative programming problems," Journal of Global Optimization, Springer, vol. 78(3), pages 453-482, November.
    7. Lizhen Shao & Matthias Ehrgott, 2014. "An objective space cut and bound algorithm for convex multiplicative programmes," Journal of Global Optimization, Springer, vol. 58(4), pages 711-728, April.
    8. Bo Zhang & Hongyu Wang & Yuelin Gao, 2024. "Output-Space Outer Approximation Branch-and-Bound Algorithm for a Class of Linear Multiplicative Programs," Journal of Optimization Theory and Applications, Springer, vol. 202(3), pages 997-1026, September.
    9. Gao, YueLin & Zhang, Bo, 2023. "Output-space branch-and-bound reduction algorithm for generalized linear fractional-multiplicative programming problem," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    10. Bo Zhang & Yuelin Gao & Xia Liu & Xiaoli Huang, 2020. "Output-Space Branch-and-Bound Reduction Algorithm for a Class of Linear Multiplicative Programs," Mathematics, MDPI, vol. 8(3), pages 1-34, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lizhen Shao & Matthias Ehrgott, 2014. "An objective space cut and bound algorithm for convex multiplicative programmes," Journal of Global Optimization, Springer, vol. 58(4), pages 711-728, April.
    2. Gao, YueLin & Zhang, Bo, 2023. "Output-space branch-and-bound reduction algorithm for generalized linear fractional-multiplicative programming problem," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    3. Bo Zhang & Hongyu Wang & Yuelin Gao, 2024. "Output-Space Outer Approximation Branch-and-Bound Algorithm for a Class of Linear Multiplicative Programs," Journal of Optimization Theory and Applications, Springer, vol. 202(3), pages 997-1026, September.
    4. T. Kuno, 1999. "Solving a Class of Multiplicative Programs with 0–1 Knapsack Constraints," Journal of Optimization Theory and Applications, Springer, vol. 103(1), pages 121-135, October.
    5. Alberto Caprara & Marco Locatelli & Michele Monaci, 2016. "Theoretical and computational results about optimality-based domain reductions," Computational Optimization and Applications, Springer, vol. 64(2), pages 513-533, June.
    6. Bo Zhang & Yuelin Gao & Xia Liu & Xiaoli Huang, 2020. "Output-Space Branch-and-Bound Reduction Algorithm for a Class of Linear Multiplicative Programs," Mathematics, MDPI, vol. 8(3), pages 1-34, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:104:y:2000:i:2:d:10.1023_a:1004657629105. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.