IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v90y2024i3d10.1007_s10898-024-01413-0.html
   My bibliography  Save this article

Online non-monotone diminishing return submodular maximization in the bandit setting

Author

Listed:
  • Jiachen Ju

    (Beijing University of Technology
    Peng Cheng Laboratory)

  • Xiao Wang

    (Peng Cheng Laboratory)

  • Dachuan Xu

    (Beijing University of Technology)

Abstract

In this paper, we study online diminishing return submodular (DR-submodular for short) maximization in the bandit setting. Our focus is on problems where the reward functions can be non-monotone, and the constraint set is a general convex set. We first present the Single-sampling Non-monotone Frank-Wolfe algorithm. This algorithm only requires a single call to each reward function, and it computes the stochastic gradient to make it suitable for large-scale settings where full gradient information might not be available. We provide an analysis of the approximation ratio and regret bound of the proposed algorithm. We then propose the Bandit Online Non-monotone Frank-Wolfe algorithm to adjust for problems in the bandit setting, where each reward function returns the function value at a single point. We take advantage of smoothing approximations to reward functions to tackle the challenges posed by the bandit setting. Under mild assumptions, our proposed algorithm can reach $$\frac{1}{4} (1- \min _{x\in {\mathcal {P}}'}\Vert x\Vert _\infty )$$ 1 4 ( 1 - min x ∈ P ′ ‖ x ‖ ∞ ) -approximation with regret bounded by $$O (T^{\frac{5 \min \{1, \gamma \}+5 }{6 \min \{1, \gamma \}+5}})$$ O ( T 5 min { 1 , γ } + 5 6 min { 1 , γ } + 5 ) , where the positive parameter $$\gamma $$ γ is related to the “safety domain” $${\mathcal {P}}'$$ P ′ . To the best of our knowledge, this is the first work to address online non-monotone DR-submodular maximization over a general convex set in the bandit setting.

Suggested Citation

  • Jiachen Ju & Xiao Wang & Dachuan Xu, 2024. "Online non-monotone diminishing return submodular maximization in the bandit setting," Journal of Global Optimization, Springer, vol. 90(3), pages 619-649, November.
  • Handle: RePEc:spr:jglopt:v:90:y:2024:i:3:d:10.1007_s10898-024-01413-0
    DOI: 10.1007/s10898-024-01413-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-024-01413-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-024-01413-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Malings, C. & Pozzi, M., 2019. "Submodularity issues in value-of-information-based sensor placement," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 93-103.
    2. Foster, Dean P. & Vohra, Rakesh, 1999. "Regret in the On-Line Decision Problem," Games and Economic Behavior, Elsevier, vol. 29(1-2), pages 7-35, October.
    3. Chuangen Gao & Shuyang Gu & Jiguo Yu & Hai Du & Weili Wu, 2022. "Adaptive seeding for profit maximization in social networks," Journal of Global Optimization, Springer, vol. 82(2), pages 413-432, February.
    4. Dam, Tien Thanh & Ta, Thuy Anh & Mai, Tien, 2023. "Robust maximum capture facility location under random utility maximization models," European Journal of Operational Research, Elsevier, vol. 310(3), pages 1128-1150.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fudenberg, Drew & Levine, David K., 1999. "Conditional Universal Consistency," Games and Economic Behavior, Elsevier, vol. 29(1-2), pages 104-130, October.
    2. Ehud Lehrer & Eilon Solan, 2007. "Learning to play partially-specified equilibrium," Levine's Working Paper Archive 122247000000001436, David K. Levine.
    3. Sergiu Hart & Andreu Mas-Colell, 2013. "A Simple Adaptive Procedure Leading To Correlated Equilibrium," World Scientific Book Chapters, in: Simple Adaptive Strategies From Regret-Matching to Uncoupled Dynamics, chapter 2, pages 17-46, World Scientific Publishing Co. Pte. Ltd..
    4. Karl Schlag & Andriy Zapechelnyuk, 2009. "Decision Making in Uncertain and Changing Environments," Discussion Papers 19, Kyiv School of Economics.
    5. Suning Gong & Qingqin Nong & Jiazhu Fang & Ding-Zhu Du, 2024. "Algorithms for Cardinality-Constrained Monotone DR-Submodular Maximization with Low Adaptivity and Query Complexity," Journal of Optimization Theory and Applications, Springer, vol. 200(1), pages 194-214, January.
    6. Andriy Zapechelnyuk, 2007. "Better-Reply Strategies with Bounded Recall," Levine's Bibliography 321307000000000961, UCLA Department of Economics.
    7. Emerson Melo, 2021. "Learning in Random Utility Models Via Online Decision Problems," Papers 2112.10993, arXiv.org, revised Aug 2022.
    8. Daron Acemoglu & Asuman Ozdaglar, 2011. "Opinion Dynamics and Learning in Social Networks," Dynamic Games and Applications, Springer, vol. 1(1), pages 3-49, March.
    9. Mannor, Shie & Shimkin, Nahum, 2008. "Regret minimization in repeated matrix games with variable stage duration," Games and Economic Behavior, Elsevier, vol. 63(1), pages 227-258, May.
    10. Young, H. Peyton, 2009. "Learning by trial and error," Games and Economic Behavior, Elsevier, vol. 65(2), pages 626-643, March.
    11. Josef Hofbauer & Sylvain Sorin & Yannick Viossat, 2009. "Time Average Replicator and Best Reply Dynamics," Post-Print hal-00360767, HAL.
    12. Schlag, Karl H. & Zapechelnyuk, Andriy, 2017. "Dynamic benchmark targeting," Journal of Economic Theory, Elsevier, vol. 169(C), pages 145-169.
    13. Eli Ben-Sasson & Adam Tauman Kalai & Ehud Kalai, 2006. "An Approach to Bounded Rationality," Discussion Papers 1439, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
    14. Michel Benaïm & Josef Hofbauer & Sylvain Sorin, 2006. "Stochastic Approximations and Differential Inclusions, Part II: Applications," Mathematics of Operations Research, INFORMS, vol. 31(4), pages 673-695, November.
    15. Dean P. Foster & Sergiu Hart, 2021. "Forecast Hedging and Calibration," Journal of Political Economy, University of Chicago Press, vol. 129(12), pages 3447-3490.
    16. Ehud Lehrer & Eilon Solan, 2016. "A General Internal Regret-Free Strategy," Dynamic Games and Applications, Springer, vol. 6(1), pages 112-138, March.
    17. Kitthamkesorn, Songyot & Chen, Anthony & Ryu, Seungkyu & Opasanon, Sathaporn, 2024. "Maximum capture problem based on paired combinatorial weibit model to determine park-and-ride facility locations," Transportation Research Part B: Methodological, Elsevier, vol. 179(C).
    18. Lehrer, Ehud, 2003. "A wide range no-regret theorem," Games and Economic Behavior, Elsevier, vol. 42(1), pages 101-115, January.
    19. Freund, Yoav & Schapire, Robert E., 1999. "Adaptive Game Playing Using Multiplicative Weights," Games and Economic Behavior, Elsevier, vol. 29(1-2), pages 79-103, October.
    20. Lin, Chaochao & Song, Junho & Pozzi, Matteo, 2022. "Optimal inspection of binary systems via Value of Information analysis," Reliability Engineering and System Safety, Elsevier, vol. 217(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:90:y:2024:i:3:d:10.1007_s10898-024-01413-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.