IDEAS home Printed from https://ideas.repec.org/p/nwu/cmsems/1439.html
   My bibliography  Save this paper

An Approach to Bounded Rationality

Author

Listed:
  • Eli Ben-Sasson
  • Adam Tauman Kalai
  • Ehud Kalai

Abstract

A central question in game theory and artificial intelligence is how a rational agent should behave in a complex environment, given that it cannot perform unbounded computations. We study strategic aspects of this question by formulating a simple model of a game with additional costs (computational or otherwise) for each strategy. First we connect this to zero-sum games, proving a counter-intuitive generalization of the classic min-max theorem to zero-sum games with the addition of strategy costs. We then show that potential games with strategy costs remain potential games. Both zero-sum and potential games with strategy costs maintain a very appealing property: simple learning dynamics converge to equilibrium.

Suggested Citation

  • Eli Ben-Sasson & Adam Tauman Kalai & Ehud Kalai, 2006. "An Approach to Bounded Rationality," Discussion Papers 1439, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
  • Handle: RePEc:nwu:cmsems:1439
    as

    Download full text from publisher

    File URL: http://www.kellogg.northwestern.edu/research/math/papers/1439.pdf
    File Function: main text
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sergiu Hart & Andreu Mas-Colell, 2013. "A General Class Of Adaptive Strategies," World Scientific Book Chapters, in: Simple Adaptive Strategies From Regret-Matching to Uncoupled Dynamics, chapter 3, pages 47-76, World Scientific Publishing Co. Pte. Ltd..
    2. Neyman, Abraham, 1985. "Bounded complexity justifies cooperation in the finitely repeated prisoners' dilemma," Economics Letters, Elsevier, vol. 19(3), pages 227-229.
    3. Foster, Dean P. & Vohra, Rakesh, 1999. "Regret in the On-Line Decision Problem," Games and Economic Behavior, Elsevier, vol. 29(1-2), pages 7-35, October.
    4. Ewerhart, Christian, 2000. "Chess-like Games Are Dominance Solvable in at Most Two Steps," Games and Economic Behavior, Elsevier, vol. 33(1), pages 41-47, October.
    5. Abreu, Dilip & Rubinstein, Ariel, 1988. "The Structure of Nash Equilibrium in Repeated Games with Finite Automata," Econometrica, Econometric Society, vol. 56(6), pages 1259-1281, November.
    6. Herbert A. Simon, 1996. "The Sciences of the Artificial, 3rd Edition," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262691914, April.
    7. Ben-Porath Elchanan, 1993. "Repeated Games with Finite Automata," Journal of Economic Theory, Elsevier, vol. 59(1), pages 17-32, February.
    8. Rubinstein, Ariel, 1986. "Finite automata play the repeated prisoner's dilemma," Journal of Economic Theory, Elsevier, vol. 39(1), pages 83-96, June.
    9. Ehud Kalai, 1987. "Bounded Rationality and Strategic Complexity in Repeated Games," Discussion Papers 783, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiang, Albert Xin & Leyton-Brown, Kevin & Bhat, Navin A.R., 2011. "Action-Graph Games," Games and Economic Behavior, Elsevier, vol. 71(1), pages 141-173, January.
    2. Waters, George A., 2009. "Chaos in the cobweb model with a new learning dynamic," Journal of Economic Dynamics and Control, Elsevier, vol. 33(6), pages 1201-1216, June.
    3. Lance Fortnow & Rahul Santhanam, 2009. "Bounding Rationality by Discounting Time," Discussion Papers 1481, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
    4. Hubie Chen, 2013. "Bounded rationality, strategy simplification, and equilibrium," International Journal of Game Theory, Springer;Game Theory Society, vol. 42(3), pages 593-611, August.
    5. Halpern, Joseph Y. & Pass, Rafael, 2015. "Algorithmic rationality: Game theory with costly computation," Journal of Economic Theory, Elsevier, vol. 156(C), pages 246-268.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. David Baron & Ehud Kalai, 1990. "Dividing a Cake by Majority: The Simplest Equilibria," Discussion Papers 919, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
    2. Hubie Chen, 2013. "Bounded rationality, strategy simplification, and equilibrium," International Journal of Game Theory, Springer;Game Theory Society, vol. 42(3), pages 593-611, August.
    3. Theodore Andronikos & Alla Sirokofskich & Kalliopi Kastampolidou & Magdalini Varvouzou & Konstantinos Giannakis & Alexander Singh, 2018. "Finite Automata Capturing Winning Sequences for All Possible Variants of the PQ Penny Flip Game," Mathematics, MDPI, vol. 6(2), pages 1-26, February.
    4. Hernández, Penélope & Solan, Eilon, 2016. "Bounded computational capacity equilibrium," Journal of Economic Theory, Elsevier, vol. 163(C), pages 342-364.
    5. Hernández, Penélope & Urbano, Amparo, 2008. "Codification schemes and finite automata," Mathematical Social Sciences, Elsevier, vol. 56(3), pages 395-409, November.
    6. Kalai, E & Neme, A, 1992. "The Strength of a Little Perfection," International Journal of Game Theory, Springer;Game Theory Society, vol. 20(4), pages 335-355.
    7. Sandroni, Alvaro & Smorodinsky, Rann, 2004. "Belief-based equilibrium," Games and Economic Behavior, Elsevier, vol. 47(1), pages 157-171, April.
    8. Gilad Bavly & Abraham Neyman, 2003. "Online Concealed Correlation by Boundedly Rational Players," Discussion Paper Series dp336, The Federmann Center for the Study of Rationality, the Hebrew University, Jerusalem.
    9. Ehud Kalai, 1995. "Games," Discussion Papers 1141, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
    10. Bavly, Gilad & Peretz, Ron, 2019. "Limits of correlation in repeated games with bounded memory," Games and Economic Behavior, Elsevier, vol. 115(C), pages 131-145.
    11. Ueda, Masahiko, 2023. "Memory-two strategies forming symmetric mutual reinforcement learning equilibrium in repeated prisoners’ dilemma game," Applied Mathematics and Computation, Elsevier, vol. 444(C).
    12. Aumann, Robert J., 1997. "Rationality and Bounded Rationality," Games and Economic Behavior, Elsevier, vol. 21(1-2), pages 2-14, October.
    13. Compte, Olivier & Postlewaite, Andrew, 2015. "Plausible cooperation," Games and Economic Behavior, Elsevier, vol. 91(C), pages 45-59.
    14. Yuan Gu & Chao Hung Chan, 2024. "Complexity Aversion," Papers 2406.18463, arXiv.org.
    15. O. V. Baskov, 2019. "Equilibrium payoffs in repeated two-player zero-sum games of finite automata," International Journal of Game Theory, Springer;Game Theory Society, vol. 48(2), pages 423-431, June.
    16. Renault, Jérôme & Scarsini, Marco & Tomala, Tristan, 2008. "Playing off-line games with bounded rationality," Mathematical Social Sciences, Elsevier, vol. 56(2), pages 207-223, September.
    17. René Levínský & Abraham Neyman & Miroslav Zelený, 2020. "Should I remember more than you? Best responses to factored strategies," International Journal of Game Theory, Springer;Game Theory Society, vol. 49(4), pages 1105-1124, December.
    18. Olivier Gossner & Penélope Hernández, 2003. "On the Complexity of Coordination," Mathematics of Operations Research, INFORMS, vol. 28(1), pages 127-140, February.
    19. Jehiel, Philippe, 1998. "Learning to Play Limited Forecast Equilibria," Games and Economic Behavior, Elsevier, vol. 22(2), pages 274-298, February.
    20. O. Gossner, 2000. "Sharing a long secret in a few public words," THEMA Working Papers 2000-15, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.

    More about this item

    Keywords

    bounded rationality; zero sum games; potential games; strategic complexity.;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nwu:cmsems:1439. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Fran Walker (email available below). General contact details of provider: https://edirc.repec.org/data/cmnwuus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.