IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v90y2024i3d10.1007_s10898-024-01399-9.html
   My bibliography  Save this article

Modified general splitting method for the split feasibility problem

Author

Listed:
  • Seakweng Vong

    (University of Macau)

  • Zhongsheng Yao

    (University of Macau
    Guangdong Ocean University)

Abstract

Based on the equivalent optimization problems of the splitting feasibility problem, we investigate this problem by using modified general splitting method in this paper. One is a relaxation splitting method with linearization, and the other combines the former with alternated inertial extrapolation step. The strong convergence of our algorithms is analyzed when related parameters are properly chosen. Compared with most existing results where inertial factor must be less than 1, inertial factor can be taken 1 in our alternated inertial-type algorithm. The efficiency of our methods are illustrated by some numerical examples.

Suggested Citation

  • Seakweng Vong & Zhongsheng Yao, 2024. "Modified general splitting method for the split feasibility problem," Journal of Global Optimization, Springer, vol. 90(3), pages 711-726, November.
  • Handle: RePEc:spr:jglopt:v:90:y:2024:i:3:d:10.1007_s10898-024-01399-9
    DOI: 10.1007/s10898-024-01399-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-024-01399-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-024-01399-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wenxing Zhang & Deren Han & Xiaoming Yuan, 2012. "An efficient simultaneous method for the constrained multiple-sets split feasibility problem," Computational Optimization and Applications, Springer, vol. 52(3), pages 825-843, July.
    2. Franck Iutzeler & Jérôme Malick, 2018. "On the Proximal Gradient Algorithm with Alternated Inertia," Journal of Optimization Theory and Applications, Springer, vol. 176(3), pages 688-710, March.
    3. Boţ, Radu Ioan & Csetnek, Ernö Robert & Hendrich, Christopher, 2015. "Inertial Douglas–Rachford splitting for monotone inclusion problems," Applied Mathematics and Computation, Elsevier, vol. 256(C), pages 472-487.
    4. Qiao-Li Dong & Songnian He & Michael Th. Rassias, 2021. "General splitting methods with linearization for the split feasibility problem," Journal of Global Optimization, Springer, vol. 79(4), pages 813-836, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pawicha Phairatchatniyom & Poom Kumam & Yeol Je Cho & Wachirapong Jirakitpuwapat & Kanokwan Sitthithakerngkiet, 2019. "The Modified Inertial Iterative Algorithm for Solving Split Variational Inclusion Problem for Multi-Valued Quasi Nonexpansive Mappings with Some Applications," Mathematics, MDPI, vol. 7(6), pages 1-22, June.
    2. Chinedu Izuchukwu & Yekini Shehu, 2021. "New Inertial Projection Methods for Solving Multivalued Variational Inequality Problems Beyond Monotonicity," Networks and Spatial Economics, Springer, vol. 21(2), pages 291-323, June.
    3. Q. L. Dong & J. Z. Huang & X. H. Li & Y. J. Cho & Th. M. Rassias, 2019. "MiKM: multi-step inertial Krasnosel’skiǐ–Mann algorithm and its applications," Journal of Global Optimization, Springer, vol. 73(4), pages 801-824, April.
    4. Seifu Endris Yimer & Poom Kumam & Anteneh Getachew Gebrie & Rabian Wangkeeree, 2019. "Inertial Method for Bilevel Variational Inequality Problems with Fixed Point and Minimizer Point Constraints," Mathematics, MDPI, vol. 7(9), pages 1-21, September.
    5. Ferdinard U. Ogbuisi & Yekini Shehu & Jen-Chih Yao, 2023. "Relaxed Single Projection Methods for Solving Bilevel Variational Inequality Problems in Hilbert Spaces," Networks and Spatial Economics, Springer, vol. 23(3), pages 641-678, September.
    6. Dongying Wang & Xianfu Wang, 2019. "A parameterized Douglas–Rachford algorithm," Computational Optimization and Applications, Springer, vol. 73(3), pages 839-869, July.
    7. Luis M. Briceño-Arias & Fernando Roldán, 2022. "Four-Operator Splitting via a Forward–Backward–Half-Forward Algorithm with Line Search," Journal of Optimization Theory and Applications, Springer, vol. 195(1), pages 205-225, October.
    8. Chanjuan Pan & Yuanheng Wang, 2019. "Convergence Theorems for Modified Inertial Viscosity Splitting Methods in Banach Spaces," Mathematics, MDPI, vol. 7(2), pages 1-12, February.
    9. Teeranush Suebcharoen & Raweerote Suparatulatorn & Tanadon Chaobankoh & Khwanchai Kunwai & Thanasak Mouktonglang, 2024. "An Inertial Relaxed CQ Algorithm with Two Adaptive Step Sizes and Its Application for Signal Recovery," Mathematics, MDPI, vol. 12(15), pages 1-16, August.
    10. Hedy Attouch & Zaki Chbani & Jalal Fadili & Hassan Riahi, 2022. "Fast Convergence of Dynamical ADMM via Time Scaling of Damped Inertial Dynamics," Journal of Optimization Theory and Applications, Springer, vol. 193(1), pages 704-736, June.
    11. Zhongming Wu & Min Li, 2019. "General inertial proximal gradient method for a class of nonconvex nonsmooth optimization problems," Computational Optimization and Applications, Springer, vol. 73(1), pages 129-158, May.
    12. E. M. Bednarczuk & A. Jezierska & K. E. Rutkowski, 2018. "Proximal primal–dual best approximation algorithm with memory," Computational Optimization and Applications, Springer, vol. 71(3), pages 767-794, December.
    13. Radu Ioan Boţ & Ernö Robert Csetnek, 2016. "An Inertial Tseng’s Type Proximal Algorithm for Nonsmooth and Nonconvex Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 171(2), pages 600-616, November.
    14. Yekini Shehu & Qiao-Li Dong & Lulu Liu & Jen-Chih Yao, 2023. "Alternated inertial subgradient extragradient method for equilibrium problems," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(1), pages 1-30, April.
    15. X. Wang & S. Li & X. Kou & Q. Zhang, 2015. "A new alternating direction method for linearly constrained nonconvex optimization problems," Journal of Global Optimization, Springer, vol. 62(4), pages 695-709, August.
    16. M. Marques Alves & Jonathan Eckstein & Marina Geremia & Jefferson G. Melo, 2020. "Relative-error inertial-relaxed inexact versions of Douglas-Rachford and ADMM splitting algorithms," Computational Optimization and Applications, Springer, vol. 75(2), pages 389-422, March.
    17. Xiaoqi Yang & Chenchen Zu, 2022. "Convergence of Inexact Quasisubgradient Methods with Extrapolation," Journal of Optimization Theory and Applications, Springer, vol. 193(1), pages 676-703, June.
    18. Dang Van Hieu & Jean Jacques Strodiot & Le Dung Muu, 2020. "An Explicit Extragradient Algorithm for Solving Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 185(2), pages 476-503, May.
    19. Nguyen Buong & Nguyen Duong Nguyen & Nguyen Thi Quynh Anh, 2024. "An Inertial Iterative Regularization Method for a Class of Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 202(2), pages 649-667, August.
    20. Q. L. Dong & Y. J. Cho & L. L. Zhong & Th. M. Rassias, 2018. "Inertial projection and contraction algorithms for variational inequalities," Journal of Global Optimization, Springer, vol. 70(3), pages 687-704, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:90:y:2024:i:3:d:10.1007_s10898-024-01399-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.