IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1806.10981.html
   My bibliography  Save this paper

Time consistency of the mean-risk problem

Author

Listed:
  • Gabriela Kov'av{c}ov'a
  • Birgit Rudloff

Abstract

Choosing a portfolio of risky assets over time that maximizes the expected return at the same time as it minimizes portfolio risk is a classical problem in Mathematical Finance and is referred to as the dynamic Markowitz problem (when the risk is measured by variance) or more generally, the dynamic mean-risk problem. In most of the literature, the mean-risk problem is scalarized and it is well known that this scalarized problem does not satisfy the (scalar) Bellman's principle. Thus, the classical dynamic programming methods are not applicable. For the purpose of this paper we focus on the discrete time setup, and we will use a time consistent dynamic convex risk measure to evaluate the risk of a portfolio. We will show that when we do not scalarize the problem, but leave it in its original form as a vector optimization problem, the upper images, whose boundary contains the efficient frontier, recurse backwards in time under very mild assumptions. Thus, the dynamic mean-risk problem does satisfy a Bellman's principle, but a more general one, that seems more appropriate for a vector optimization problem: a set-valued Bellman's principle. We will present conditions under which this recursion can be exploited directly to compute a solution in the spirit of dynamic programming. Numerical examples illustrate the proposed method. The obtained results open the door for a new branch in mathematics: dynamic multivariate programming.

Suggested Citation

  • Gabriela Kov'av{c}ov'a & Birgit Rudloff, 2018. "Time consistency of the mean-risk problem," Papers 1806.10981, arXiv.org, revised Jan 2020.
  • Handle: RePEc:arx:papers:1806.10981
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1806.10981
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Riedel, Frank, 2004. "Dynamic coherent risk measures," Stochastic Processes and their Applications, Elsevier, vol. 112(2), pages 185-200, August.
    2. Andreas Löhne & Birgit Rudloff & Firdevs Ulus, 2014. "Primal and dual approximation algorithms for convex vector optimization problems," Journal of Global Optimization, Springer, vol. 60(4), pages 713-736, December.
    3. Duan Li & Wan‐Lung Ng, 2000. "Optimal Dynamic Portfolio Selection: Multiperiod Mean‐Variance Formulation," Mathematical Finance, Wiley Blackwell, vol. 10(3), pages 387-406, July.
    4. Tomas Björk & Agatha Murgoci, 2014. "A theory of Markovian time-inconsistent stochastic control in discrete time," Finance and Stochastics, Springer, vol. 18(3), pages 545-592, July.
    5. Cheridito, Patrick & Stadje, Mitja, 2009. "Time-inconsistency of VaR and time-consistent alternatives," Finance Research Letters, Elsevier, vol. 6(1), pages 40-46, March.
    6. Richard Bellman, 1954. "Some Applications of the Theory of Dynamic Programming---A Review," Operations Research, INFORMS, vol. 2(3), pages 275-288, August.
    7. Andreas Hamel & Andreas Löhne & Birgit Rudloff, 2014. "Benson type algorithms for linear vector optimization and applications," Journal of Global Optimization, Springer, vol. 59(4), pages 811-836, August.
    8. Detlefsen, Kai & Scandolo, Giacomo, 2005. "Conditional and dynamic convex risk measures," SFB 649 Discussion Papers 2005-006, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    9. Daniel Ciripoi & Andreas Löhne & Benjamin Weißing, 2018. "A vector linear programming approach for certain global optimization problems," Journal of Global Optimization, Springer, vol. 72(2), pages 347-372, October.
    10. Kai Detlefsen & Giacomo Scandolo, 2005. "Conditional and dynamic convex risk measures," Finance and Stochastics, Springer, vol. 9(4), pages 539-561, October.
    11. MOSSIN, Jan, 1968. "Optimal multiperiod portfolio policies," LIDAM Reprints CORE 19, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    12. Zachary Feinstein & Birgit Rudloff, 2017. "A recursive algorithm for multivariate risk measures and a set-valued Bellman’s principle," Journal of Global Optimization, Springer, vol. 68(1), pages 47-69, May.
    13. Rudloff, Birgit & Street, Alexandre & Valladão, Davi M., 2014. "Time consistency and risk averse dynamic decision models: Definition, interpretation and practical consequences," European Journal of Operational Research, Elsevier, vol. 234(3), pages 743-750.
    14. Tomas Björk & Agatha Murgoci & Xun Yu Zhou, 2014. "Mean–Variance Portfolio Optimization With State-Dependent Risk Aversion," Mathematical Finance, Wiley Blackwell, vol. 24(1), pages 1-24, January.
    15. Firdevs Ulus, 2018. "Tractability of convex vector optimization problems in the sense of polyhedral approximations," Journal of Global Optimization, Springer, vol. 72(4), pages 731-742, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Çağın Ararat & Zachary Feinstein, 2021. "Set-valued risk measures as backward stochastic difference inclusions and equations," Finance and Stochastics, Springer, vol. 25(1), pages 43-76, January.
    2. Zachary Feinstein & Birgit Rudloff, 2018. "Time consistency for scalar multivariate risk measures," Papers 1810.04978, arXiv.org, revised Nov 2021.
    3. Zachary Feinstein & Birgit Rudloff, 2018. "Scalar multivariate risk measures with a single eligible asset," Papers 1807.10694, arXiv.org, revised Feb 2021.
    4. Strub, Moris S. & Li, Duan & Cui, Xiangyu & Gao, Jianjun, 2019. "Discrete-time mean-CVaR portfolio selection and time-consistency induced term structure of the CVaR," Journal of Economic Dynamics and Control, Elsevier, vol. 108(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zachary Feinstein & Birgit Rudloff, 2018. "Scalar multivariate risk measures with a single eligible asset," Papers 1807.10694, arXiv.org, revised Feb 2021.
    2. Zachary Feinstein & Birgit Rudloff, 2018. "Time consistency for scalar multivariate risk measures," Papers 1810.04978, arXiv.org, revised Nov 2021.
    3. Chen, Zhiping & Li, Gang & Zhao, Yonggan, 2014. "Time-consistent investment policies in Markovian markets: A case of mean–variance analysis," Journal of Economic Dynamics and Control, Elsevier, vol. 40(C), pages 293-316.
    4. De Lara, Michel & Leclère, Vincent, 2016. "Building up time-consistency for risk measures and dynamic optimization," European Journal of Operational Research, Elsevier, vol. 249(1), pages 177-187.
    5. Zachary Feinstein & Birgit Rudloff, 2012. "Multiportfolio time consistency for set-valued convex and coherent risk measures," Papers 1212.5563, arXiv.org, revised Oct 2014.
    6. Chen, Zhi-ping & Li, Gang & Guo, Ju-e, 2013. "Optimal investment policy in the time consistent mean–variance formulation," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 145-156.
    7. Wayne King Ming Chan, 2015. "RAROC-Based Contingent Claim Valuation," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 3-2015, January-A.
    8. Wayne King Ming Chan, 2015. "RAROC-Based Contingent Claim Valuation," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 21, July-Dece.
    9. Zachary Feinstein & Birgit Rudloff, 2015. "Multi-portfolio time consistency for set-valued convex and coherent risk measures," Finance and Stochastics, Springer, vol. 19(1), pages 67-107, January.
    10. Zhiping Chen & Jia Liu & Gang Li & Zhe Yan, 2016. "Composite time-consistent multi-period risk measure and its application in optimal portfolio selection," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(3), pages 515-540, October.
    11. Claudia Kluppelberg & Jianing Zhang, 2015. "Time-consistency of risk measures with GARCH volatilities and their estimation," Papers 1504.04774, arXiv.org, revised Feb 2016.
    12. Zachary Feinstein & Birgit Rudloff, 2012. "Time consistency of dynamic risk measures in markets with transaction costs," Papers 1201.1483, arXiv.org, revised Dec 2012.
    13. c{C}au{g}{i}n Ararat & Zachary Feinstein, 2019. "Set-Valued Risk Measures as Backward Stochastic Difference Inclusions and Equations," Papers 1912.06916, arXiv.org, revised Sep 2020.
    14. Zachary Feinstein & Birgit Rudloff, 2013. "Time consistency of dynamic risk measures in markets with transaction costs," Quantitative Finance, Taylor & Francis Journals, vol. 13(9), pages 1473-1489, September.
    15. Samuel N. Cohen & Tanut Treetanthiploet, 2019. "Gittins' theorem under uncertainty," Papers 1907.05689, arXiv.org, revised Jun 2021.
    16. Zachary Feinstein & Birgit Rudloff, 2015. "A Supermartingale Relation for Multivariate Risk Measures," Papers 1510.05561, arXiv.org, revised Jan 2018.
    17. Davi Michel Valladão & Álvaro Veiga & Alexandre Street, 2018. "A Linear Stochastic Programming Model for Optimal Leveraged Portfolio Selection," Computational Economics, Springer;Society for Computational Economics, vol. 51(4), pages 1021-1032, April.
    18. Hellmann, Tobias & Riedel, Frank, 2015. "A dynamic extension of the Foster–Hart measure of riskiness," Journal of Mathematical Economics, Elsevier, vol. 59(C), pages 66-70.
    19. Çağın Ararat & Zachary Feinstein, 2021. "Set-valued risk measures as backward stochastic difference inclusions and equations," Finance and Stochastics, Springer, vol. 25(1), pages 43-76, January.
    20. Bäuerle, Nicole & Glauner, Alexander, 2022. "Markov decision processes with recursive risk measures," European Journal of Operational Research, Elsevier, vol. 296(3), pages 953-966.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1806.10981. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.