The appeals of quadratic majorization–minimization
Author
Abstract
Suggested Citation
DOI: 10.1007/s10898-023-01361-1
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Groenen, Patrick J. F. & van de Velden, Michel, 2016. "Multidimensional Scaling by Majorization: A Review," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 73(i08).
- Jérôme Bolte & Edouard Pauwels, 2016. "Majorization-Minimization Procedures and Convergence of SQP Methods for Semi-Algebraic and Tame Programs," Mathematics of Operations Research, INFORMS, vol. 41(2), pages 442-465, May.
- Emilie Chouzenoux & Jean-Christophe Pesquet & Audrey Repetti, 2014. "Variable Metric Forward–Backward Algorithm for Minimizing the Sum of a Differentiable Function and a Convex Function," Journal of Optimization Theory and Applications, Springer, vol. 162(1), pages 107-132, July.
- Jan Leeuw, 1984. "Differentiability of Kruskal's stress at a local minimum," Psychometrika, Springer;The Psychometric Society, vol. 49(1), pages 111-113, March.
- Jan Leeuw, 1988. "Convergence of the majorization method for multidimensional scaling," Journal of Classification, Springer;The Classification Society, vol. 5(2), pages 163-180, September.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Peter Ochs, 2018. "Local Convergence of the Heavy-Ball Method and iPiano for Non-convex Optimization," Journal of Optimization Theory and Applications, Springer, vol. 177(1), pages 153-180, April.
- Patrick Groenen & Rudolf Mathar & Willem Heiser, 1995. "The majorization approach to multidimensional scaling for Minkowski distances," Journal of Classification, Springer;The Classification Society, vol. 12(1), pages 3-19, March.
- Julius Žilinskas, 2012. "Parallel branch and bound for multidimensional scaling with city-block distances," Journal of Global Optimization, Springer, vol. 54(2), pages 261-274, October.
- Ching-pei Lee & Stephen J. Wright, 2019. "Inexact Successive quadratic approximation for regularized optimization," Computational Optimization and Applications, Springer, vol. 72(3), pages 641-674, April.
- de Leeuw, Jan & Mair, Patrick, 2009. "Multidimensional Scaling Using Majorization: SMACOF in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 31(i03).
- Wei Liu & Li Yang & Bo Yu, 2020. "A Lifting-Penalty Method for Quadratic Programming with a Quadratic Matrix Inequality Constraint," Mathematics, MDPI, vol. 8(2), pages 1-11, January.
- Sixuan Bai & Minghua Li & Chengwu Lu & Daoli Zhu & Sien Deng, 2022. "The Equivalence of Three Types of Error Bounds for Weakly and Approximately Convex Functions," Journal of Optimization Theory and Applications, Springer, vol. 194(1), pages 220-245, July.
- Noga Ram & Shoham Sabach, 2024. "A Globally Convergent Inertial First-Order Optimization Method for Multidimensional Scaling," Journal of Optimization Theory and Applications, Springer, vol. 202(2), pages 949-974, August.
- Emilie Chouzenoux & Jean-Baptiste Fest, 2022. "SABRINA: A Stochastic Subspace Majorization-Minimization Algorithm," Journal of Optimization Theory and Applications, Springer, vol. 195(3), pages 919-952, December.
- Linghao Zhang & Bo Pang & Haitao Tang & Hongjun Wang & Chongshou Li & Zhipeng Luo, 2022. "Pairwise Constraints Multidimensional Scaling for Discriminative Feature Learning," Mathematics, MDPI, vol. 10(21), pages 1-16, November.
- Radu Ioan Boţ & Ernö Robert Csetnek & Szilárd Csaba László, 2016. "An inertial forward–backward algorithm for the minimization of the sum of two nonconvex functions," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 4(1), pages 3-25, February.
- Michael J. Greenacre & Patrick J. F. Groenen, 2016.
"Weighted Euclidean Biplots,"
Journal of Classification, Springer;The Classification Society, vol. 33(3), pages 442-459, October.
- Michael Greenacre & Patrick J.F. Groenen, 2013. "Weighted Euclidean Biplots," Working Papers 708, Barcelona School of Economics.
- Michael Greenacre & Patrick J. F. Groenen, 2013. "Weighted Euclidean biplots," Economics Working Papers 1380, Department of Economics and Business, Universitat Pompeu Fabra.
- Francisco Facchinei & Vyacheslav Kungurtsev & Lorenzo Lampariello & Gesualdo Scutari, 2021. "Ghost Penalties in Nonconvex Constrained Optimization: Diminishing Stepsizes and Iteration Complexity," Mathematics of Operations Research, INFORMS, vol. 46(2), pages 595-627, May.
- Radu Ioan Boţ & Ernö Robert Csetnek, 2016. "An Inertial Tseng’s Type Proximal Algorithm for Nonsmooth and Nonconvex Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 171(2), pages 600-616, November.
- J. C. De Los Reyes & E. Loayza & P. Merino, 2017. "Second-order orthant-based methods with enriched Hessian information for sparse $$\ell _1$$ ℓ 1 -optimization," Computational Optimization and Applications, Springer, vol. 67(2), pages 225-258, June.
- Kagie, M. & van Wezel, M.C. & Groenen, P.J.F., 2009. "Map Based Visualization of Product Catalogs," ERIM Report Series Research in Management ERS-2009-010-MKT, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
- Groenen, P.J.F. & Borg, I., 2013. "The Past, Present, and Future of Multidimensional Scaling," Econometric Institute Research Papers EI 2013-07, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- Groenen, P.J.F. & van de Velden, M., 2004. "Multidimensional scaling," Econometric Institute Research Papers EI 2004-15, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- Robert Schneider, 1992. "A uniform approach to multidimensional scaling," Journal of Classification, Springer;The Classification Society, vol. 9(2), pages 257-273, December.
- Lawrence Hubert & Phipps Arabie & Matthew Hesson-Mcinnis, 1992. "Multidimensional scaling in the city-block metric: A combinatorial approach," Journal of Classification, Springer;The Classification Society, vol. 9(2), pages 211-236, December.
More about this item
Keywords
Differentiable optimization; Majorization–minimization; Tame optimization; Multidimensional scaling; Inverse problems;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:89:y:2024:i:3:d:10.1007_s10898-023-01361-1. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.