IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v67y2017i2d10.1007_s10589-017-9891-z.html
   My bibliography  Save this article

Second-order orthant-based methods with enriched Hessian information for sparse $$\ell _1$$ ℓ 1 -optimization

Author

Listed:
  • J. C. De Los Reyes

    (Escuela Politécnica Nacional)

  • E. Loayza

    (Escuela Politécnica Nacional)

  • P. Merino

    (Escuela Politécnica Nacional)

Abstract

We present a second order algorithm, based on orthantwise directions, for solving optimization problems involving the sparsity enhancing $$\ell _1$$ ℓ 1 -norm. The main idea of our method consists in modifying the descent orthantwise directions by using second order information both of the regular term and (in weak sense) of the $$\ell _1$$ ℓ 1 -norm. The weak second order information behind the $$\ell _1$$ ℓ 1 -term is incorporated via a partial Huber regularization. One of the main features of our algorithm consists in a faster identification of the active set. We also prove that a reduced version of our method is equivalent to a semismooth Newton algorithm applied to the optimality condition, under a specific choice of the algorithm parameters. We present several computational experiments to show the efficiency of our approach compared to other state-of-the-art algorithms.

Suggested Citation

  • J. C. De Los Reyes & E. Loayza & P. Merino, 2017. "Second-order orthant-based methods with enriched Hessian information for sparse $$\ell _1$$ ℓ 1 -optimization," Computational Optimization and Applications, Springer, vol. 67(2), pages 225-258, June.
  • Handle: RePEc:spr:coopap:v:67:y:2017:i:2:d:10.1007_s10589-017-9891-z
    DOI: 10.1007/s10589-017-9891-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10589-017-9891-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10589-017-9891-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. NESTEROV, Yurii, 2013. "Gradient methods for minimizing composite functions," LIDAM Reprints CORE 2510, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    2. Georg Stadler, 2009. "Elliptic optimal control problems with L 1 -control cost and applications for the placement of control devices," Computational Optimization and Applications, Springer, vol. 44(2), pages 159-181, November.
    3. Emilie Chouzenoux & Jean-Christophe Pesquet & Audrey Repetti, 2014. "Variable Metric Forward–Backward Algorithm for Minimizing the Sum of a Differentiable Function and a Convex Function," Journal of Optimization Theory and Applications, Springer, vol. 162(1), pages 107-132, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pedro Merino, 2019. "A difference-of-convex functions approach for sparse PDE optimal control problems with nonconvex costs," Computational Optimization and Applications, Springer, vol. 74(1), pages 225-258, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ching-pei Lee & Stephen J. Wright, 2019. "Inexact Successive quadratic approximation for regularized optimization," Computational Optimization and Applications, Springer, vol. 72(3), pages 641-674, April.
    2. Kaiwen Ma & Nikolaos V. Sahinidis & Sreekanth Rajagopalan & Satyajith Amaran & Scott J Bury, 2021. "Decomposition in derivative-free optimization," Journal of Global Optimization, Springer, vol. 81(2), pages 269-292, October.
    3. Hao Wang & Hao Zeng & Jiashan Wang, 2022. "An extrapolated iteratively reweighted $$\ell _1$$ ℓ 1 method with complexity analysis," Computational Optimization and Applications, Springer, vol. 83(3), pages 967-997, December.
    4. Michael Hintermüller & Tao Wu, 2014. "A superlinearly convergent R-regularized Newton scheme for variational models with concave sparsity-promoting priors," Computational Optimization and Applications, Springer, vol. 57(1), pages 1-25, January.
    5. A. Scagliotti & P. Colli Franzone, 2022. "A piecewise conservative method for unconstrained convex optimization," Computational Optimization and Applications, Springer, vol. 81(1), pages 251-288, January.
    6. Ren Jiang & Zhifeng Ji & Wuling Mo & Suhua Wang & Mingjun Zhang & Wei Yin & Zhen Wang & Yaping Lin & Xueke Wang & Umar Ashraf, 2022. "A Novel Method of Deep Learning for Shear Velocity Prediction in a Tight Sandstone Reservoir," Energies, MDPI, vol. 15(19), pages 1-20, September.
    7. Silvia Bonettini & Peter Ochs & Marco Prato & Simone Rebegoldi, 2023. "An abstract convergence framework with application to inertial inexact forward–backward methods," Computational Optimization and Applications, Springer, vol. 84(2), pages 319-362, March.
    8. Emilie Chouzenoux & Jean-Christophe Pesquet & Audrey Repetti, 2016. "A block coordinate variable metric forward–backward algorithm," Journal of Global Optimization, Springer, vol. 66(3), pages 457-485, November.
    9. Zhaosong Lu & Xiaojun Chen, 2018. "Generalized Conjugate Gradient Methods for ℓ 1 Regularized Convex Quadratic Programming with Finite Convergence," Mathematics of Operations Research, INFORMS, vol. 43(1), pages 275-303, February.
    10. Masaru Ito, 2016. "New results on subgradient methods for strongly convex optimization problems with a unified analysis," Computational Optimization and Applications, Springer, vol. 65(1), pages 127-172, September.
    11. TAYLOR, Adrien B. & HENDRICKX, Julien M. & François GLINEUR, 2016. "Exact worst-case performance of first-order methods for composite convex optimization," LIDAM Discussion Papers CORE 2016052, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    12. Richard C. Barnard & Christian Clason, 2017. "$$L^1$$ L 1 penalization of volumetric dose objectives in optimal control of PDEs," Computational Optimization and Applications, Springer, vol. 67(2), pages 401-419, June.
    13. Li, Hongyi & Wang, Chaojie & Zhao, Di, 2020. "Preconditioning for PDE-constrained optimization with total variation regularization," Applied Mathematics and Computation, Elsevier, vol. 386(C).
    14. Francisco Fuica & Felipe Lepe & Enrique Otárola & Daniel Quero, 2023. "An Optimal Control Problem for the Navier–Stokes Equations with Point Sources," Journal of Optimization Theory and Applications, Springer, vol. 196(2), pages 590-616, February.
    15. Masoud Ahookhosh, 2019. "Accelerated first-order methods for large-scale convex optimization: nearly optimal complexity under strong convexity," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 89(3), pages 319-353, June.
    16. Dimitris Bertsimas & Ryan Cory-Wright, 2022. "A Scalable Algorithm for Sparse Portfolio Selection," INFORMS Journal on Computing, INFORMS, vol. 34(3), pages 1489-1511, May.
    17. Peter Ochs, 2018. "Local Convergence of the Heavy-Ball Method and iPiano for Non-convex Optimization," Journal of Optimization Theory and Applications, Springer, vol. 177(1), pages 153-180, April.
    18. Dewei Zhang & Yin Liu & Sam Davanloo Tajbakhsh, 2022. "A First-Order Optimization Algorithm for Statistical Learning with Hierarchical Sparsity Structure," INFORMS Journal on Computing, INFORMS, vol. 34(2), pages 1126-1140, March.
    19. Sergio González-Andrade & Sofía López-Ordóñez & Pedro Merino, 2021. "Nonsmooth exact penalization second-order methods for incompressible bi-viscous fluids," Computational Optimization and Applications, Springer, vol. 80(3), pages 979-1025, December.
    20. Weibin Mo & Yufeng Liu, 2022. "Efficient learning of optimal individualized treatment rules for heteroscedastic or misspecified treatment‐free effect models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(2), pages 440-472, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:67:y:2017:i:2:d:10.1007_s10589-017-9891-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.